Author(s): Sandip Murtale, Prakash Goudanavar, Ankit Acharya, Jaytheertha Lokapur, R. S. Chitti, Jeet Bahadur Moktan

Email(s): murtalesandy@gmail.com

DOI: 10.52711/0974-360X.2021.01163   

Address: Sandip Murtale1, Prakash Goudanavar1, Ankit Acharya1, Jaytheertha Lokapur1, R. S. Chitti2, Jeet Bahadur Moktan2
1Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, B.G.Nagara-571448.
2Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, B.G.Nagara-571448.
*Corresponding Author

Published In:   Volume - 14,      Issue - 12,     Year - 2021


ABSTRACT:
Polymers are high molecular weight compounds consisting of monomers which are repeating small units’ offers as a backbone to the macromolecular structure. Natural polymers can be rendered water-soluble by chemical modification have been the subject of extensive technical reviews and original research reports, over the past fifty years. Early interests of natural polymers were associated with the food, paper, leather and textile industries and to a lesser extent, the cosmetics and Pharmaceutical industries. These natural polymers have advantages over synthetic polymers, since these are chemically inert, nontoxic, less expensive, biodegradable and widely available. Natural polymer can also be modified in different ways to obtain tailor made materials for drug-delivery systems and thus can compete with the available synthetic polymer. Moreover, the large number of pharma industry showed their interest towards these naturally derived polymers to discover, extract and purify such compounds from the natural origin. Modified polymers are the potent candidates to be used in various pharmaceutical dosages as a potential candidate for novel drug delivery system (NDDS). Therefore in this review, potential application of modified and non-modified natural polymers in various drug delivery systems has been described.


Cite this article:
Sandip Murtale, Prakash Goudanavar, Ankit Acharya, Jaytheertha Lokapur, R. S. Chitti, Jeet Bahadur Moktan. Application of natural and modified Polymers in Novel Drug Delivery: A review. Research Journal of Pharmacy and Technology. 2021; 14(12):6732-0. doi: 10.52711/0974-360X.2021.01163

Cite(Electronic):
Sandip Murtale, Prakash Goudanavar, Ankit Acharya, Jaytheertha Lokapur, R. S. Chitti, Jeet Bahadur Moktan. Application of natural and modified Polymers in Novel Drug Delivery: A review. Research Journal of Pharmacy and Technology. 2021; 14(12):6732-0. doi: 10.52711/0974-360X.2021.01163   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-12-93


REFERENCE:
1.    Vyas SP, Khar RK. Controlled drug delivery. Vallabh Prakashan, Delhi, India. 2006.
2.    Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ. Modified gums: Approaches and applications in drug delivery. Carbohydrate Polymers. 2011; 83(3):1031-47.
3.    Albuquerque P, Coelho LC, Teixeira JA, Carneiro-da-Cunha MG. Approaches in biotechnological applications of natural polymers. AIMS Molecular Science. 2016; 3(3):386-425.
4.    Babu VR, Raokrishna KSV, Sairam M, Naidu BVK, Hosamani Aminabhavi TM. pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of Ibuprofen. Journal of Applied Polymer Sciences. 2006; 99:2671-78.
5.    Satturwar PM, Fulzele SV, Dorle AK Biodegradation and in-vivo biocompatibility of rosin: A natural film-forming polymer. AAPS Pharm Sci Tech. 2003; 14: 1-6.
6.    Chaurasia M, Chaurasia ME, Jain NE, Jain A, Soni V, Gupta Y. Cross linked Guar gum microspheres: A variable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS Pharm Sci Tech. 2006; 7: 1-9.
7.    Malafaya PD, Silva GA, Reis RL. Natural origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering application. Adv Drug Deily Rev 2007; 59:207-233.
8.    Chivate AA, Poddar SS, Abdul 5, Savant C. Evaluation of sterculia faetida gum as controlled release excipient. AAPS Pharm Sci Tech. 2008; 9:197-204.
9.    Varshosaz J, Tavakoli N, Eram SA. Use of natural gums and cellulose derivatives in production of sustained release Metoprolol tablets. Drug Deivery. 2006; 13:113-119.
10.    Hanunan JH, Tarirai C. Functional excipients. Chemistry Today. 2006; 24:57-62.
11.    Quotig D, Neufelcl RJ. DNA encapsulation within co-guanidine membrane coated alginate beads and protection from extra capsular nuclease. Journal of Microencapsulation. 1999; 16(5):573-85.
12.    Pandey R. Polymer based drug delivery systems for mycobacterial infections. Curr Drug Del. 2004; 1:195-201.
13.    Chamarthy SP, Final R. Plasticizer concentration and the performance of a diffusion controlled polymeric drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 33:25-30.
14.    Alonso SM, Teijeiro D, Remunan LC, Alonso MJ. Glucomanan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics. 2008; 72(2)453-462.
15.    Shirwaikar, Prabu SL, Kumar GA. Herbal excipients in novel drug delivery systems. Indian Journal of Pharmaceutical Science. 2008; 70:415-422.
16.    Haider A, Mukherjee S, Sa B. Development and evaluation of polyethylene amine-treated calcium alginate beads for sustained release of Diltiazem. Journal of Microencapsulation. 2005; 22:67-80.
17.    Almeida PF, Almeida AJ. Cross linked alginate-gelatin beads: a new matrix for controlled release of Pindolol. Journal of Control Release. 2004; 97:431-9.
18.    Kulkarni AR, Soppimath KS. In-vitro release kinetics of Cefadroxil loaded sodium alginate interpenetrating network beads. European Journal of Pharmaceutics and Biopharmaceutics. 2001; 51:127-33.
19.    Babu VR, Raokrishna KSV. pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of Ibuprofen. Journal of Applied polymer Sciences. 2006; 99: 2671-8.
20.    Kumar P, Singh I. Formulation and characterization of Tramadol loaded IPN microgels of alginate and gelatin: Optimization using response surface methodology. Acta Pharm. 2010; 60:295-310.
21.    Ray R, Mandal M, Chatterjee K, Sa B. Development and evaluation of a new interpenetrating network bead of sodium carboxymethyl xanthan and sodium alginate for Ibuprofen release. Pharmacology and Pharmacy. 2010; 1:9-17.
22.    Ray R, Maiti S, Sa B. Preliminary investigation on the development of Diltiazem resin complex loaded carboxymethyl xanthan beads. AAPS Pharm Sci Tech. 2008; 9:295-301.
23.    Shetty P, Kumar R, Yamunappa, Suvarna P, Narayana Swamy VB. Design and evaluation of sustained release matrix tablets of Etodolac. Asian J Pharm Tech. 2016; 6(1):1-14.
24.    Nirmala D, Durga L, Sudhakar M. Formulation and in-vitro characterisation of capecitabine gastro retentive floating tablets. Asian J Pharm Tech. 2019; 9(3):154-8.
25.    Soppinath KS, Kulkarni AR. Controlled release of antihypertensive drug from the interpenetrating network poly (vinyl-alcohol)-guar gum hydrogel microspheres. Journal of Biomaterials Science Polymer ED. 2000; 11:27-43.
26.    Thakur B, Pandit V, Ashawat MS, Kumar P. Natural and synthetic polymers for colon targeted drug delivery. Asian J Pharm Tech. 2016; 6(1):35-44.
27.    Malviya R, Shukla P. Preparation, characterization and evaluation of chitosan gum Arabic coacervates excipient in fast dissolving/disintegrating dosage form. Journal of Pharmacy Science. 2009; 34:13-20.
28.    Rasul A Iqbal M, Murtaza G, Waqas MK, Hanif M, Khan SA, Bhatti NS. Design, development and in-vitro evaluation of tartrate tablets containing xanthan-tragacanth. Acta Pol Pharm. 2010; 67(5):517-22.
29.    Pop M, Dumitriu CL, Sunel V. Interpenetrated polymeric network based on Gellan and Poly(vinyl Alcohol). Polymer Plastics Technology and Engineering. 2004; 43(5):1503-16.
30.    Agnihotri SA, Aminabhavi TM. Development of novel interpenetrating network gellan gum-poly (vinyl alcohol) hydrogel microspheres for the controlled release of Carvedilol. Drug Dev Ind Pharm. 2005; 31:491-503.
31.    Shah JN, Jani GK, Parikh IR. Gellan gum and its application. A review. Pharmainfo.net. 2007; 5(6):1-7.
32.    Bhardwaj TR, Kanwar M, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Development and Industrial Pharmacy. 2000; 26(10):1025-38.
33.    Chang RK, Shukla AJ. Handbook of pharmaceutical excipients. The Pharmaceutical Press and the American Pharmaceutical Association, 2003; pp. 462-468.
34.    Jani GK. Gums and mucilages: Versatile excipients for pharmaceutical formulations. Asian J Pharm Sci. 2009; 4(5): 309-32.
35.    Shirwaikar A, Prabu SL, Kumar GA. Herbal excipients in novel drug delivery systems. IJPS. 2008; 70: 415-22.
36.    Kottke KM, Edward MR. Tablet dosage forms. Modern Pharmaceutics. New York: Marcel Dekker, Inc; 2002: 287-333.
37.    Aslam A, Parrott E. Effect of aging on some physical properties of hydrochlorothiazide tablets. J Pharm Sci. 1971; 60:263-6.
38.    Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Delivery. 2004; 11:129-48.
39.    Edgar K. Organic cellulose esters. In: Mark HF (ed) Encyclopedia of polymer science and technology, Wiley, New York: NY. 2004; 9:129-58.
40.    Chen YL. Preparation and characterization of water-soluble chitosan gel for skin hydration. University Sail's Malaysia. 2008:1-181.
41.    Zhang C, Li N, Liu X, Zhao Z, Li Z, et al. The structure of a sulfated galactan from Porphyrahaitanensis and its in-vivo antioxidant activity. Carbohydrate Research. 2004; 339:105-11.
42.    Dutta PK, Dutta J, Tripathi VS. Chitin and Chitosan: Chemistry, properties and application. J Sci Ind Res. 2004; 63: 20-31.
43.    Martindale's. The complete Drug Reference, Pharmaceutical press I. 2009: 442-8.
44.    Gautier Si, Lecourtier. Polym. Bull. (Berlin). 1991; 26: 41.
45.    Hatada, Kitayarna, NMR Spectroscopy of Polymers. Springer Laboratory Manuals in Polymer Science, 2006.
46.    Dodi G, Hritcu D, Popa MI. Carboxy methylation of guar gum: synthesis and characterization. Cellu Chem Tech. 2011; 45:171-6.
47.    Sarin Chavhan, Shinde SA, Sapkal SB, Shrikhande VN. Herbal excipients in novel drug delivery systems. Asian J Pharm Res. 2017; 7(2): 111-7.
48.    Chen YL. Preparation and characterization of water-soluble chitosan gel for skin hydration. University Sail's Malaysia. 2008:1-181.
49.    Zhang C. Li N, Liu X, Zhao Z, Li Z, et al. The structure of a sulfated galactan from Porphyrahaitanensis and its in-vivo antioxidant activity. Carbohydrate Res. 2004; 339:105-11.
50.    Dutta PK, Dutta J, Tripathi VS. Chitin and Chitosan: Chemistry, properties and application. J Sci Ind Res. 2004; 63: 20-31.
51.    Salve PS. Development and in-vitro evaluation colon targeted drug delivery system using natural gums. Asian J Pharm Res. 2011; 1(4):91-101.
52.    Patil P, Rao BS, Kulkarni SV, Basavaraj, Surpur C, Ammanage A. Formulation and in-vitro evaluation of floating matrix tablets of ofloxacin. Asian J Res Pharm Sci. 2011; 1(1):17-22.
53.    Hatada, Kitayarna. NMR spectroscopy of polymers. Springer laboratory manuals in polymer science, 2009.
54.    Prabhanjan H, Gharia MM. Guar gum derivatives-Part I: Preparation and properties. Carbohydrate Polymer. 1989; 11: 279-92.
55.    Lapasin    F, Tracanelli P. Rheology of hydroxyethyl guar gum derivatives. Carbohydrate Polymer. 1991; 14:411-27.
56.    Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65: 899-911.
57.    Pepenzhik MA. Synthesis of graft cellulose copolymers and calcium salt of poly (acrylic acid). J Appl Polymer Science 103(3):1382-8.
58.    Stepto RFT, Gilbert RG, Hess M, Jones RG, et al. Dispersity in Polymer Science. Pure Applied Chemistry. 2009; 351-353.
59.    Thakur G. Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. Adv Exp Med Biolo. 2018:213-31.
60.    Amit B. Polymer grafting and crosslinking, Published by John Wiley & Sons, Inc., Hoboken, New Jersey page numbers. 2008; 20-23.
61.    Ofoefule SI, Chukwu A, Anyakoha N. Application of Abelmoschus esculents in solid dosage formulation: Use as a binder for a poorly water-soluble drug. Indian Journal of Pharmaceutical Science. 2001; 63:234-8.
62.    Ofoefule SI, Chukwu A. Application of Abelmoschus esculents gum as a mini-matrix for furosemide and diclofenac sodium tablets. Indian Journal of Pharmaceutical Science. 2001; 63:532-5.
63.    John GL, Declaim MD, James EK. The use of Agar as a novel filler for monolithic matrices produced using hot melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics. 2006; 64:75-81.
64.    Oluwatoyin AO. Assessment of Albizia zygia gum as a binding agent in tablet formulations. Acta Pharm. 2005; 55:263-76.
65.    Jani GK, Shah DP, Jain VC. Evaluating mucilage from Aloe barbadensis Miller as a pharmaceutical excipient for sustained-release matrix tablets. Pharm Tech. 2007; 31:90-8.
66.    Prajapati VD, Maheriya PM, Jani GK, Patil PD, Patel BN. Lepidium sativum Linn.: a current addition to the family of mucilage and its applications. International Journal of Biological Macromolecule. 2014; 65:72‐80.
67.    Avachat MK, Dhanme AG. Oral controlled release drug delivery system with husk powder from Lepidium sativtum seeds. Patent No. W002100438.
68.    Ahmed B, Mutasim A. Sustained release characteristics of tablets prepared with mixed matrix of sodium carragennan and chitosan: Effect of polymer weight ratio, dissolution media and drug type. Drug Dev Ind Pharm. 2005:31:241-7.
69.    Bonferoni MC, Rossi R, Tamayo M. On the employment of k-carrageenan in a matrix system. I. Sensitivity to dissolution medium and comparison with Na-carboxy methylcellulose and xanthan gum. Journal of Control Release. 1993; 26:119-27.
70.    Bonferoni MC, Rossi R, Tamayo M. On the employment of k-carrageenan in a matrix system. II. k-Carrageenan and hydroxypropyl methylcellulose mixtures. Journal of Control Release. 1994, 30:175-82.
71.    Pontes UR. Determination of HLB of Anacardium gum. Rev Farm Bioquim Univ Sao Paulo. 1971.2: 83-91.
72.    Zakaria MB, Zainiah AR. Rheological properties of cashew gum. Carbohydrate Polymer. 1996, 29: 25-27.
73.    Pawar H, D'mello PM. Isolation of seed gum from Cassia tora and preliminary studies of its applications as a binder for tablets. Indian Drugs. 2004; 41:465-8.
74.    Baveja SK, Rao KV, Arora J. Examination of natural gums and mucilages as sustaining materials in tablet dosage forms. Indian Journal of Pharmaceutical Science. 1988; 50:89-92.
75.    Gowthamrajan K. Evaluation of Fenugreek mucilage as gelling agent. Int J Pharm Exc. 2002; 3:16-19.
76.    Kulkatiti GT, Gowthamaraj K, Rao BG. Evaluation of binding property of Plantago ovata & Trigonella foenum Gracecum mucilage. Indian Drugs. 2002; 39:422-5.
77.    Kale VV, Kasliwal R, and Pafida SK, Formulation and release characteristics of guar gum matrix tablet containing metformin HC1. International Journal of Pharmaceutical Excipient. 2004; 75-80.
78.    Khullar P, Khar RK, Agrawal SR. Evaluation of guar gum in the preparation of sustained-release matrix tablets. Drug Development and Industrial Pharmacy.1998; 24:1095-9.
79.    Kibbe AH. Guar gum. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press and the American Pharmaceutical Association. 2003:271-3.
80.    Heda A, Shivhare U. Study of some natural hydrophilic polymers as matrix forming materials for sustained release tablet formulation. International Journal of Pharmaceutical Exp. 2004; 69-74.
81.    Sheller E. Gum Acacia. In: C. R. Raymond, J. S. Paul, J. W. Paul, ed. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press and the American Pharmaceutical Association. 2003:1-2.
82.    Jain NK, Dixit VK. Studies on gums and their derivatives as binding agent. IJPS. 1988; 50: 113-4.
83.    Owen SC. Gum Tragacanth. In: C. R. Raymond, J. S. Paul, J. W. Paul. ed. Handbook of Pharmaceutical Excipients. The Pharmaceutical Press and the American Pharmaceutical Association. 2003:654-656.
84.    Wahi SP, Sharma VD, Jain VK. Studies on emulsifying property of mucilages of Hygrophila spinosa and Hibiscus esculentus. Indian Journal of Natural Product. 1985; 1:3-6.
85.    Wahi SP, Sharma VD, Jain VK. Studies on suspending property of mucilages of Hygrophila spinosa and Hibiscus esculentus Linn. Indian Drugs. 1985; 22:500-2.
86.    Edwin J, Edwin S, Dosi S. Application of Hibiscus leaves mucilage as suspending agent. Indian Journal of Pharmaceutical Education Research. 2007; 41:373-5.
87.    Jain GK, Shah DP. Assessing Hibiscus rosa-sinensis Linn as an excipient in sustained release tablets. Pharmaceutical Technology. 2008; 62-75.
88.    Jaiii GK, Shah DP. Evaluation of mucilage of Hibiscus rosasinensis Linn as rate controlling matrix for sustained release of diclofenac. Drug Development and Industrial Pharmacy. 2008; 34:807-16.
89.    Desai A, Shidhaye S, Kadani VJ. Possible use of psyllium husk as a release retardant. IJPS. 2007; 69: 206-10.
90.    Prajapati ST, Prajapati VD, Acharya SR, Characterization of disintegration properties of Plantago ovata mucilage in the formulation of dispersible tablets. Indian Journal of Pharmaceutical Science and Education Research. 2006; 40:208-11.
91.    Srinivas K, Prakash K, Kiran HR. Study of Ocimum basilicum and Plantago ovata as disintegrants in the formulation of dispersible tables. Indian Journal of Pharmaceutical Science. 2003; 65:180-3.
92.    Mithal BM, Kasid JL. Evaluation of the emulsifying properties of Plantago ovata (Ispaghula) seed husk. Indian Journal of Pharmaceutical Science. 1964; 26:316-9.
93.    Mithal BM, Kasid SL. Evaluation of the suspending properties of Plantago ovata (Ispaghula) seed husk. Indian Journal of Pharmaceutical Science. 1965; 27:331-5.
94.    Rao BS, Prasanna Y, Mary S. Design and studies of gum karaya matrix tablet. Int J Pharm Exp. 2000; 239-42.
95.    Munday DL, Philip JC. Compressed xanthan and karaya gum matrices: Hydration, erosion and drug release mechanisms. International Journal of Pharmaceutics. 2000; 203:179-92.
96.     Odeku OA, Itiola OA. Evaluation of the effects of khaya gum on the mechanical and release properties of paracetamol tablets. Drug Development and Industrial Pharmacy. 2003; 29:311-20.
97.    Verma, Razdan B. Studies on Leucaena leucocephala seed gum: Emulsifying properties. J Sci Ind Res. 2003:62:198.
98.    Verma PRP, Razdan B. Evaluation of Leucaenea leucocephala seed gum as suspending agent in sulphadimidine suspensions. Indian Journal of Pharmaceutical Science. 2003; 65:665-8.
99.    Verma PRP, Razdan B. Evaluation of Leucaenea leucocephala seed gum in tabletting I. Binding properties in granules and tablets. S.T.P. Pharma Sciences. 2002, 12:113-9.
100.     Verma PRP, Razdan B. Evaluation of Leucaena leucocephala seed gum in tabletting. I. Disintegrant properties. Pharma Science. 2002; 12:109-12.
101.    Verma PRP, Razdan B. Studies on Leucaena leucocephala seed gum: Evaluation of suspending properties. S. T P. Pharma Science. 2001; 11:289-93.
102.    Anroop B, Bhatnagar SP, Ghosh B. Studies on Ocimum gratissimum seed mucilage: Evaluation of suspending properties. Indian Journal of Pharmaceutical Science. 2005; 67:206¬-9.
103.    Anroop B, Bhatnagar SP, Parcha V. Studies on Ocimum gratissimum seed mucilage: Evaluation of binding properties. Indian Journal of Pharmaceutical Science. 2006; 325:191-3.
104.    www.cpkelco.comipectiniapplications.html
105.    hilp://www.ippa.infoiapplications_for_pectin.htm
106.    Kulkarni GT, Gowthamrajan K, Rao GB. Evaluation of binding properties of selected natural mucilages. Evaluation of binding properties of selected natural mucilages. 2002; 61:529-32.
107.    Alison CH, John RM, Martyn CD. Structure and behavior in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. Journal of Controlled Release. 1995; 33:143-52.
108.    Howard JR, Timmins. Controlled release formulations. U S Patent 4792452, 1988.
109.    Seiyaku F. Sustained-release dil Pazep hydrochloride tablets containing sodium alginate. Japanese Patent 01025721, 1989.
110.    Viemstein H. Retarded-release drug tablet with alginic acid - sodium alginate matrix. Austrian Patent 385200, 1988.
111.    Thierry N, George C, John FJ. Alginate and gellan gum as tablet coating. U S Patent 6326028B1, 2003.
112.    Kulkarni D, Dwivedi AK, Sarin JPS, Tamarind seed polyose: A potential polysaccharides for sustained release of verapamil hydrochloride as a model drug. Indian Journal of Pharmaceutical science. 1997; 59:1-7.
113.    Dhopeshwarkar V, Zatz JL. Evaluation of xanthan gum in the preparation of sustained release matrix tablets. Drug Development and Industrial Pharmacy. 1993; 19:999-1017.
114.    Antony PJ, Sanghavi NM. A new disintegrant for pharmaceutical dosage forms. Drug Development and Industrial Pharmacy.1997; 23:413-5.
115.    Lit EX, Jiang ZQ, Zhang QZ, A water-insoluble drug monolithic osmotic tablet system utilizing gum Arabic as an osmotic, suspending and expanding agent. Journal of Controlled Release. 2003; 92:375-82.
116.    Beneke CE, Viljoen AM, Hanunan JH. Polymeric plant-derived excipients in drug delivery. Molecules. 2009; 14:2602-20.
117.    Nayak BS, Nayak UK, Patro KB, Rout. Design and evaluation of controlled release Bhara gum microcapsules of famotidine for oral use. Research Journal of Pharmacy and Technology. 2008, 1: 433-7.
118.    Zhang J, Zhang S, Wang Y. Composite magnetic microspheres of tamarind gum and chitosan: Preparation and characterization. Journal of Macromolecular Science Part A. 2007; 44:433-7.
119.    Prajapati V. Gums and mucilages. Asian Journal of Pharmaceutical Sciences. 2009; 4(5):309-323.
120.    Wang C, Xiong FU, Sheng YL. Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery. Chinese Science Bulletin. 2007; 52:7:883-¬9.
121.    Mukherjee B, Dinda SC, Barik BB. Gum Cordia: A novel matrix forming material for enteric resistant and sustained drug delivery - A technical note. AAPS Pharm Sci Tech. 2008; 9:1-5.
122.    Cardenas A, Higuera-Ciapara I, Goycoolea FM. Rheology and aggregation of Cactus (Opuntia ficus-indica) mucilage in solution. Journal of the Professional Association for Cactus Development. 1997; 152- 159.
123.    Krishnaiah YSR. Development of colon targeted oral Guar gum matrix tablets of Albendazole for the treatment of helminthiasis. Indian Journal of Pharmaceutical science. 2003; 65:378¬-85.
124.    Krishnaiah YSR. Guar gum as a carrier for colon specific delivery; Influence of Metronidazole and Tinidazole on in-vitro release of Albendazole from Guar gum matrix tablets. Journal of Pharmacy and Pharmaceutical Science. 2001, 4: 235-243.
125.    Chourasia MK, Jain SK. Potential of guar gum microspheres for target specific drug release to colon. Journal of Drug Target. 2004; 12:435-42.
126.    Rozier A, Mazuel C, Grove J, Plazonnet B. Functionality testing of gellan gum: a polymeric excipient material for ophthalmic dosage forms. International Journal of Pharmaceutics. 1997; 153:191-8.
127.    Miyazaki S, Kawasaki N, Kubo K. Comparison of in-situ gelling formulations for the oral delivery of cimetidine. International Journal of Pharmaceutics. 2001; 220:161-8.
128.    Kedzierewicz F, Lombry C, Rios R. Effect of the formulation on the in-vitro release of propranolol from gellan beads. International Journal of Pharmaceutics. 1999; 178:129-36.
129.    Coviello T, Dentini M, Rambone G. A novel cross-linked polysaccharide: Studies for a controlled delivery matrix. Journal of Controlled Release. 1998; 55:57-66.
130.    Rajnikanth PS, Balasubramaniam J, Mishra B. Development and evaluation of a novel floating in-situ gelling system of amoxicillin for eradication of Helicobacter pylori. International Journal of Pharmacy. 2007; 335:114-22.
131.    Agnihotri SA, Jawalkar SS, Aminabhavi TM. Controlled release of cephalexin through gellan gum beads: Effect of formulation parameters on entrapment efficiency, size, and drug release. European Journal of Pharmacy and Biopharmaceutics. 2006, 63:249-61.
132.    Alur HH, Pather SI, Mitra AK, Evaluation of a novel, natural oligosaccharide gum as a sustained-release and mucoadhesive component of calcitonin buccal tablets. Indian Journal of Pharmaceutical Science. 2003; 6:33-66.
133.    Alur HH, Pather SI, Mitra AK. Evaluation of the gum from Hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets. Pharmaceutical Development and Technology. 1999; 4:347-58.
134.    Singh B, Chauhan GS, Sharma DK. The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide-based hydrogels (II). Carbohydrate Polymer. 2007; 67:559-65.
135.    Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. IJPS. 2003; 6:33-66.
136.    Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Delivery. 2004; 11:129-48.
137.    Chavanpatil MD, Jain P, Choudhari P, Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. International Journal of Pharmacy. 2006; 316:86-92.
138.    Park CR, Munda DL. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug Delivery and Industrial Pharmacy. 2004; 30:609-17.
139.    Xiaohong MG, Michae JT, John NS. Influence of physiological variables on the in-vitro drug-release behavior of a polysaccharide matrix controlled-release system. Drug Delivery and Industrial Pharmacy. 2003; 29:19-29.
140.    Anthony A, Nwabunze OJ. Mucuna gum microspheres for oral delivery of libenclamide: In-vitro evaluation. Acta Pharm. 2007; 57:161-71.
141.    Kalu VD, Odeniyi MA, Jaiyeoba KT. Matrix properties of a new plant gum in controlled drug delivery. Arch Pharm Res. 2007; 30:884-9.
142.    Pornsak S. Investigation of pectin as a carrier for oral delivery of proteins using calcium pectinate gel beads. International Journal of Pharmaceutics.1998; 169:213-20.
143.    Pomsak S, S. Srisagul S, Satit P. Use of pectin as a carrier for intra-gastric floating drug delivery: Carbonate salt contained beads. Carbohydrate Polymer. 2007; 67:436-45.
144.    Vandamme F, Lenourry A, Charrueau C. The use of polysaccharides to target drugs to the colon. Carbohydrate Polymer, 2002; 48:219-31.
145.    Surigthongjeen S, Pitaksuteepong T, Somsiri A, Studies on pectins as potential hydrogel matrices for controlled release drug delivery. Drug Development and Industrial Pharmacy. 1999; 12:1271-6.
146.     Tho S, Sande A, Kleinebudde P. Pectinic acid: A novel excipient for production of pellets by extrusion/ spheronisation: Preliminary studies. European Journal of Pharmaceutics and Biopharmaceutics. 2002; 54:95-9.
147.    Giunchedi P, Conte U, Chetoni P. Pectin microspheres as ophthalmic carriers for piroxicam: Evaluation in-vitro and in-vivo in albino rabbits. Indian Journal of Pharmaceutical Science. 1999; 9: 1-7.
148.    Musabayane CT, Munjefi O, Matavire TP. Transdermal delivery of chloroquine by Amidated pectin hydrogel matrix patch in the rat. Renal Failure. 2003; 25:525-34.
149.    Cheng K, Lim LY. Insulin-loaded calcium pectinate nanoparticles: Effects of pectin molecular weight and formulation pH. Drug Development and Industrial Pharmacy. 2004; 30:359-67.
150.    Ying DY, S. Parkar S, Luo XX, Microencapsulation of probiotics using kiwifruit polysaccharide and alginate chitosan. Acta Horticulturae. 2007; 753(753):801-8.
151.    Kulkarni GT, Gowthamarajan K, Dhobe RR, Development of controlled release spheroids using natural polysaccharide as release modifier. Drug Delivery. 2005; 12:201-6.
152.    Datta R, Bandyopadhyay AK. A new nasal drug delivery system for diazepam using natural mucoadhesive polysaccharide obtained from tamarind seeds. Saudi Pharmaceutical Journal. 2006; 14:115-9.
153.    Santos H, Veiga F, Pina ME. Compaction compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. International Journal of Pharmaceutics. 2005; 295:15-27.
154.    Vendruscolo CW, Andreazza IF. Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. International Journal of Pharmaceutics. 2005; 296(1-2):1‐11.
155.    Babu MM, Prasad CDS, Kumar NR. Studies on the modified form of gum karaya and its applicability as tablet disintegrant. Indian Journal of Pharmaceutical Science. 2000; 2:185-91.
156.    Babu MM. Studies on preparation and evaluation of modified form of gum karaya. IJPS. 2002; 64: 244-9.
157.    Jani GK, Goswami JM, Prajapati VD. Studies on formulation and evaluation of new superdisintegrants for dispersible tablets. International Journal of Pharmaceutical Excipient. 2005, 2: 37-43.
158.    Rao NR, Rao UM. Hypochlorate modified potato starch: A new potato starch derivative as potential tablet disintegrant. International Journal of Pharmaceutical Excipient. 2000; 3:216¬-9.
159.    Gohel MC, Patel SD, Shah NK. Evaluation of synthesized cross-linked tragacanth as a potential disintegrant. Indian Journal of Pharmaceutical Science. 1997; 59:113-8.
160.    Trivedi BM, Patel PM, Patel LD. Crosslinked gum acacia as a disintegrant. IJPS. 1986; 48:188-90.
161.    Baveja JM, Misra AN. Modified guar gum as a tablet disintegrant. Pharmazine. 1997; 52:856-9.
162.    Cartilier L, Mateescu MA. Crosslinked amylose as a binder disintegrant in tablets. US Patent No. 5616343.
163.    Cartilier L, Chebli C. Cross-linked cellulose as a tablet excipient. US Patent No. 5989589.
164.    Bong-Kun C, Mirwais S, Michael L. Evaluation of the disintegrant properties for an experimental, cross-linked polyallammonium polymer. International Journal of Pharmaceutics. 1998; 173:87-92.
165.    Fenyvest E, Antal B, Zsadon B, Szejtli J. Cyclodextrin polymer, a new tablet disintegrating agent. Pharmazie. 1984; 39:473-5.
166.    Okafor IS, Ofoefule SI, Udeala OK. A comparative study of modified starches in direct compression of a poorly water-soluble drug (hydrochlorothiazide). Boll. Chim. Farm. 2001; 140:36-9.
167.    Bharadia PD. A Preliminary investigation on sesbania gum as a pharmaceutical excipient. Int J Pharm Exc. 2004; 4:99-102.
168.    Chaurasia M, Chourasia MK, Jain NK. Crosslinked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS Pharma Tech Res. 2006; 7: E143-51.
169.    Toti US, Aininabhavi TM. Modified guar gum matrix tablet for controlled release of Diltiazem hydrochloride. Journal of Controlled Release. 2004; 95(3):567-77.
170.    Gliko-Kabir I, Yager B, Penhasi A, Rubinstein A. Phosphated crosslinked guar for colon-specific drug delivery: I. Preparation and physicochemical characterization. Journal of Controlled Release. 2000; 63:121-7.
171.    Rane S, Kale V. Evaluation of modified guar gum as film coating material. Int J Chem Tech Res. 2009; 1:180-2.
172.    Sandolo C, Coviello T, Matricardi P. Characterization of polysaccharide hydrogels for modified drug delivery. European Biophysics Journal. 2007; 36: 693-700.
173.    Sumathi S, Ray AR. Release behaviour of drugs from tamarind seed polysaccharide tablets. Journal of Pharmacy and Pharmaceutical Science. 2002; 5:12-8.
174.    Miyazaki S, Suisha F. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J Contr Rel. 1998; 56:75-83.
175.    Singh B, Chauhan GS, Sharma DK. The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels. International Journal of Pharmaceutics. 2006; 325:15-25.
176.    Singh B, Chauhan GS, Kumar S. Synthesis characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydrate. Polymer. 2007; 67:190-200.
177.    Singh B. Modification of psyllium polysaccharides for use in oral insulin delivery. Food Hydrocolloids. 2009; 23: 928-35.
178.    Gohel MC, Patel MM, Amin AF. Gohel MC, Patel MM, Amin AF. Development of modified release diltiazem HCl tablets using composite index to identify optimal formulation. Drug Del Ind Pharm. 2003; 29(5):565‐74.
179.    Mishra A, Clark JH, Pal S. Modification of Okra mucilage with acrylamide: synthesis, characterization and swelling behavior. Carbohydrate Polymer. 2008; 72:608¬-15.
180.    Patel GC, Patel MM. Preliminary evaluation of Sesbania seed gum mucilage as gelling agent. International Journal of Pharm Tech Research. 2009; 1:840-3.
181.    Singh V, Tiwari A, Tripathi DN. Poly(acrylonitrile) grafted Ipomoea seed-gums: A renewable reservoir to industrial gums. Biomacromolecules. 2005, 6: 453¬456.
182.    Bhatia MS, Deshmukh R, Choudhari P. Chemical modification of pectins, characterization and evaluation for drug delivery. Scientia Pharmaceutica. 2008; 76: 775-84.
183.    Mishra RK, Datt M, Pal K. Preparation and characterization of Amidated pectin-based hydrogels for drug delivery system. Mater Sci Mater Med. 2008; 19: 2275-80.
184.    Smolinske Susan C. Handbook of food, drug, and cosmetic excipients. CRC Press; 1 ed; 1992.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available