Author(s):
Zainab H. Fathi, Jehan A. Mohammad, Marwah H. Mohammed
Email(s):
zainabh@uomosul.edu.iq
DOI:
10.52711/0974-360X.2021.01108
Address:
Zainab H. Fathi1*, Jehan A. Mohammad1, Marwah H. Mohammed2
1Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Mosul, Mosul-Iraq.
2Department of Clinical Laboratory Sciences, College of Pharmacy, University of Mosul, Mosul-Iraq.
*Corresponding Author
Published In:
Volume - 14,
Issue - 12,
Year - 2021
ABSTRACT:
Adiponectin (APN) is an adipokine with anti-inflammatory and anti-atherogenic properties decreased in type 2 diabetes mellitus (T2DM) that may influence endothelial function by regulating serum nitric oxide (NO) levels. The current study aimed to investigate the effect of two oral hypoglycemic drugs, Metformin and Glibenclamide (GLC), on circulating APN and NO levels and to find a correlation between APN and NO levels in type 2 diabetic patients. Fifty males and females previously diagnosed with T2DM were conducted in this trial and classified into groups: Group A involved 18 untreated patients with T2DM, group B involved 16 patients receiving Metformin monotherapy (1000 mg/day) for up to 1 year and group C involved 16 patients receiving GLC (5 mg/day) for up to 1 year. Circulating APN and NO were measured. Compared to GLC, Metformin therapy showed a significant increase in APN and NO levels in type 2 diabetic patients. Our findings established that Metformin has a protective effect on endothelial function, including increased APN and NO bioavailability, beyond its glucose-lowering effect.
Cite this article:
Zainab H. Fathi, Jehan A. Mohammad, Marwah H. Mohammed. Evaluation of the Vasoprotective Effects of Metformin versus Glibenclamide in Type 2 Diabetic Patients. Research Journal of Pharmacy and Technology. 2021; 14(12):6409-2. doi: 10.52711/0974-360X.2021.01108
Cite(Electronic):
Zainab H. Fathi, Jehan A. Mohammad, Marwah H. Mohammed. Evaluation of the Vasoprotective Effects of Metformin versus Glibenclamide in Type 2 Diabetic Patients. Research Journal of Pharmacy and Technology. 2021; 14(12):6409-2. doi: 10.52711/0974-360X.2021.01108 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-12-38
REFERENCES:
1. Zheng Y., Ley S.H., Hu F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature reviews. Endocrinology. 2018;14(2):88.
2. Nanditha A., Ma R.C.W., Ramachandran A., Snehalatha C., Chan J.C.N., Chia K.S., et al. Diabetes in Asia and the Pacific: Implications for the Global Epidemic. Diabetes Care. 2016;39(3):472.
3. Morrish N.J., Wang S.L., Stevens L.K., Fuller J.H., Keen H., and the W.H.O.M.S.G. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001;44(2):S14.
4. Rojas L.B.A., Gomes M.B. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5:6.
5. Tokubuchi I., Tajiri Y., Iwata S., Hara K., Wada N., Hashinaga T., et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One. 2017;12(2):e0171293.
6. World Health O., International Diabetes F. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation. Geneva: World Health Organization; 2006.
7. Group U.P.D.S.U. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854.
8. Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A.W. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. New England Journal of Medicine. 2008;359(15):1577.
9. Roussel R., Travert F., Pasquet B., Wilson P.W.F., Smith S.C., Jr, Goto S., et al. Metformin Use and Mortality Among Patients With Diabetes and Atherothrombosis. Archives of Internal Medicine. 2010;170(21):1892.
10. Brownlee M. The Pathobiology of Diabetic Complications. A Unifying Mechanism. 2005;54(6):1615.
11. Quyyumi A.A. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. The American Journal of Medicine. 1998;105(1, Supplement 1):32S.
12. Fathi Z.H., Mohammad J.A., Mohammed M.H. Levels of Myeloperoxidase, Malondialdehyde and Lipid Profile in Type 2 Diabetic Patients on Metformin Versus Glibenclamide Therapy. Systematic Revirews in Pharmacy. 2020;11(11):1777.
13. Napoli C., de Nigris F., Williams-Ignarro S., Pignalosa O., Sica V., Ignarro L.J. Nitric oxide and atherosclerosis: An update. Nitric Oxide. 2006;15(4):265.
14. Heidari B., Lerman A., Lalia A.Z., Lerman L.O., Chang A.Y. Effect of Metformin on Microvascular Endothelial Function in Polycystic Ovary Syndrome. Mayo Clinic Proceedings. 2019;94(12):2455.
15. Almulathanon A.A.Y., Mohammad J.A., Fathi F.H. Comparative effects of metformin and glibenclamide on the redox balance in type 2 diabetic patients. Pharmacia. 2021;68(2):327.
16. Mohammad J.A., Almulathanon A.A.Y., Fathi F.H. Assessment of the effects of metformin and glibenclamide on the concentration of selected trace elements in type 2 diabetic patients. Pharmacia. 2021;68(4):845.
17. Almulathanon A.A.Y., Mohammad J.A., Allwash T.A. Evaluation the effects of insulin on oxidant/antioxidant status in type 1 diabetic patients. Pharmacia 2021;68(3):699.
18. Sena C.M., Matafome P., Louro T., Nunes E., Fernandes R., Seica R.M. Metformin restores endothelial function in aorta of diabetic rats. British journal of pharmacology. 2011;163(2):424.
19. Bailey C.J., Grant P.J. The UK Prospective Diabetes study. The Lancet. 1998;352(9144):1932.
20. Brady P.A., Terzic A. The sulfonylurea controversy: more questions from the heart. Journal of the American College of Cardiology. 1998;31(5):950.
21. Scognamiglio R., Avogaro A., Vigili de Kreutzenberg S., Negut C., Palisi M., Bagolin E., et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes. 2002;51(3):808.
22. Garratt K.N., Brady P.A., Hassinger N.L., Grill D.E., Terzic A., Holmes D.R. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. Journal of the American College of Cardiology. 1999;33:119.
23. Lee T.M., Chou T.F. Impairment of myocardial protection in type 2 diabetic patients. The Journal of clinical endocrinology and metabolism. 2003;88(2):531.
24. Ballagi-Pordany G., Koszeghy A., Koltai M.Z., Aranyi Z., Pogatsa G. Divergent cardiac effects of the first and second generation hypoglycemic sulfonylurea compounds. Diabetes research and clinical practice. 1990;8(2):109.
25. Mohammad J.A., Fathi Z.H., Allwash T.A. Assessment the effects of insulin on adiponectin, nitric oxide, myeloperoxidase and lipid profile in type 1 diabetic patients. Pharmacia. 2021;68(2):313.
26. Zulian A., Cancello R., Girola A., Gilardini L., Alberti L., Croci M., et al. In vitro and in vivo effects of metformin on human adipose tissue adiponectin. Obesity facts. 2011;4:27.
27. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412.
28. Ouchi N., Kobayashi H., Kihara S., Kumada M., Sato K., Inoue T., et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. The Journal of biological chemistry. 2004; 279(2):1304.
29. Miranda K.M., Espey M.G., Wink D.A. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. Nitric Oxide. 2001;5:62.
30. Schmid P.M., Resch M., Schach C., Birner C., Riegger G.A., Luchner A., et al. Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectin-induced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats. Cardiovascular Diabetology. 2013;12:46.
31. Emini-Sadiku M., Car N., Begolli L., Blaslov K., Haliti E., Bahtiri E. The differential influence of glimepiride and glibenclamide on insulin resistance and adiponectin levels in patients with type 2 diabetes. Endocrine Journal. 2019; 66(10):915.
32. Tiikkainen M., Häkkinen A.-M., Korsheninnikova E., Nyman T., Mäkimattila S., Yki-Järvinen H. Effects of Rosiglitazone and Metformin on Liver Fat Content, Hepatic Insulin Resistance, Insulin Clearance, and Gene Expression in Adipose Tissue in Patients With Type 2 Diabetes. Diabetes. 2004; 53(8): 2169.
33. Doogue M.P., Begg E.J., Moore M.P., Lunt H., Pemberton C.J., Zhang M. Metformin increases plasma ghrelin in Type 2 diabetes. Br J Clin Pharmacol. 2009;68(6):875.
34. Matsuzawa Y., Funahashi T., Kihara S., Shimomura I. Adiponectin and metabolic syndrome. Arteriosclerosis, thrombosis, and vascular biology. 2004;24:29.
35. Hotta K., Funahashi T., Bodkin N.L., Ortmeyer H.K., Arita Y., Hansen B.C., et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001; 50(5): 1126.
36. Hotta K., Funahashi T., Arita Y., Takahashi M., Matsuda M., Okamoto Y., et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, thrombosis, and vascular biology. 2000;20(6):1595.
37. Inoue T., Kotooka N., Morooka T., Komoda H., Uchida T., Aso Y., et al. High molecular weight adiponectin as a predictor of long-term clinical outcome in patients with coronary artery disease. The American journal of cardiology. 2007;100(4):569.
38. Liu Y., Huang C., Ceng C., Zhan H., Zheng D., Han W. Metformin enhances nitric oxide production and diminishes Rho kinase activity in rats with hyperlipidemia. Lipids Health Dis. 2014;13:115.
39. Sambe T., Mason R.P., Dawoud H., Bhatt D.L., Malinski T. Metformin treatment decreases nitroxidative stress, restores nitric oxide bioavailability and endothelial function beyond glucose control. Biomedicine & Pharmacotherapy. 2018;98:149.
40. Jojima T., Suzuki K., Hirama N., Uchida K., Hattori Y. Glimepiride upregulates eNOS activity and inhibits cytokine-induced NF-kappaB activation through a phosphoinoside 3-kinase-Akt-dependent pathway. Diabetes, obesity & metabolism. 2009;11(2):143.
41. Kato Y., Koide N., Komatsu T., Tumurkhuu G., Dagvadorj J., Kato K., et al. Metformin attenuates production of nitric oxide in response to lipopolysaccharide by inhibiting MyD88-independent pathway. Hormone and metabolic research = Hormon-und Stoffwechselforschung=Hormones et metabolisme. 2010;42(9):632.