Author(s): David Nugraha, Natasya Ariesta Selyardi Putri, Visuddho, Citrawati Dyah Kencono Wungu

Email(s): citrawati.dyah@fk.unair.ac.id

DOI: 10.52711/0974-360X.2021.01038   

Address: David Nugraha1, Natasya Ariesta Selyardi Putri1, Visuddho1, Citrawati Dyah Kencono Wungu2,3*
1Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 14,      Issue - 11,     Year - 2021


ABSTRACT:
Inflammatory bowel disease (IBD), which consists of Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the intestine. The etiology is heterogeneous and multifactorial, including genetic susceptibility, immune-mediated tissue damage, and changes of lumen microenvironment, especially short-chain fatty acid (SCFA) producing bacteria. Several studies reported a decrease in SCFA concentration in both CD and UC. In fact, SCFAs has important roles in accelerating disease remission. This systematic review aimed to evaluate the changes in SCFA concentration, the composition of SCFA-producing bacteria, and SCFA metabolism in IBD. A literature search was conducted via PubMed, Scopus, and CENTRAL by selecting studies according to inclusion and exclusion criteria. The quality and risk of bias assessment were performed using the Newcastle-Ottawa Scale (NOS). Overall, 160 UC and 127 CD patients from 5 studies were reviewed. The SCFA concentration was significantly reduced (p <0.05) in both PC and UC. Moreover, there was a decrease in major SCFA-producing bacteria. Clostridium coccoides were significantly decreased in the feces of active UC (p = 0.015) and CD (p = 0.04). Clostridium leptum was decreased on intestinal mucosal biopsy of active CD and UC (p <0.0001). Faecalibacterium prausnitzii were decreased in active CD faeces (p <0.0001) and UC (p = 0.0001). Butyrate oxidation rate was also reported to decrease in UC compared to control (p<0.0001). In conclusion, the ability of major SCFA-producing bacterial production in IBD was diminished, which implies a decreased protective and anti-inflammatory effect of SCFA that altered its metabolism.


Cite this article:
David Nugraha, Natasya Ariesta Selyardi Putri, Visuddho, Citrawati Dyah Kencono Wungu. Comparison of Bacterial Composition, Concentration, and Metabolism of Short Chain Fatty Acid in Inflammatory Bowel Disease: A Systematic Review. Research Journal of Pharmacy and Technology. 2021; 14(11):5978-4. doi: 10.52711/0974-360X.2021.01038

Cite(Electronic):
David Nugraha, Natasya Ariesta Selyardi Putri, Visuddho, Citrawati Dyah Kencono Wungu. Comparison of Bacterial Composition, Concentration, and Metabolism of Short Chain Fatty Acid in Inflammatory Bowel Disease: A Systematic Review. Research Journal of Pharmacy and Technology. 2021; 14(11):5978-4. doi: 10.52711/0974-360X.2021.01038   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-11-64


REFERENCES:
1.    Dubey P, Sumithra M, Chitra V. Assessment of inflammatory bowel disease and its herbal cure: A review. Research J Pharm Tech. 2019; 12(3): 1432–40.
2.    Deshmukh R, Kumari S, Harwansh RK. Inflammatory bowel disease: A snapshot of current knowledge. .Research Journal of Pharmacy and Technology. Research J Pharm Tech. 2020; (13): p.956–62.
3.    Ye Y, Pang Z, Chen W, Ju S, Zhou C. Epidemiology and risk factors of inflammatory bowel diseases. Int J Clin Exp Med. 2015; 8(12): 22529–42.
4.    Kelompok Studi Inflammatory Bowel Disease (IBD) Indonesia, Djojoningrat D, Simadibrata M, Makmun D, Abdullah M, Syam A, et al. Konsensus Nasional Penatalaksanaan IBD di Indonesia. Clin Transl Immunol. 2011;
5.    Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016; 5(4): 1–8.
6.    Plöger S, Stumpff F, Penner GB, Schulzke JD, Gäbel G, Martens H, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012; 1258(1): 52–9.
7.    Kovarik JJ, Tillinger W, Hofer J, Hölzl MA, Heinzl H, Saemann MD, et al. Impaired anti-inflammatory efficacy of n-butyrate in patients with IBD. Eur J Clin Invest. 2011; 41(3): 291–8.
8.    Venegas DP, De La Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019; 10.
9.    Scaldaferri F, Gerardi V, Lopetuso LR, Zompo F Del, Mangiola F, Boškoski I, et al. Gut Microbial Flora, Prebiotics, and Probiotics in IBD: Their Current Usage and Utility. 2013; 2013: 1–9.
10.    Higgins J, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration; 2011.
11.    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339.
12.    Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
13.    Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013; 19(22): 3404–14.
14.    Ferrer-Picón E, Dotti I, Corraliza AM, Mayorgas A, Esteller M, Perales JC, et al. Intestinal Inflammation Modulates the Epithelial Response to Butyrate in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis. 2020; 26(1): 43–55.
15.    Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, et al. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics. 2014; 11(1): 122–33.
16.    Mottawea W, Chiang CK, Mühlbauer M, Starr AE, Butcher J, Abujamel T, et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun. 2016; 7: 1–14.
17.    Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: A systematic review. Inflamm Bowel Dis [Internet]. 2015; 21(6): 1219–28.
18.    Canani RB, Costanzo M Di, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011; 17(12): 1519–28.
19.    Mu C, Zhang L, He X, Smidt H, Zhu W. Dietary fibres modulate the composition and activity of butyrate-producing bacteria in the large intestine of suckling piglets. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2017; 110(5): 687–96.
20.    Laserna-Mendieta EJ, Clooney AG, Carretero-Gomez JF, Moran C, Sheehan D, Nolan JA, et al. Determinants of reduced genetic capacity for butyrate synthesis by the gut microbiome in Crohn’s disease and ulcerative colitis. J Crohn’s Colitis. 2018; 12(2): 204–16.
21.    Bui TPN, Ritari J, Boeren S, De Waard P, Plugge CM, De Vos WM. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat Commun. 2015; 6.
22.    Louis P, Flint H. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2016; 19(1): 29-41.
23.    Deuring J, de Haar C, Koelewijn C, Kuipers E, Peppelenbosch M, van der Woude C. Absence of ABCG2-mediated mucosal detoxification in patients with active inflammatory bowel disease is due to impeded protein folding. Biochem J. 2012; 441: 87–93.
24.    Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, et al. Butyrate Attenuates Inflammation and Lipolysis Generated by the Interaction of Adipocytes and Macrophages. Journal of Atherosclerosis and Thrombosis. J Atheroscler Thromb. 2013; 20(5): 425–42.
25.    Vancamelbeke M, Laeremans T, Vanhove W, Arnauts K, Ramalho A, Farré R, et al. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis. J Crohns Colitis. 2019.
26.    De Preter V, Geboes K, Bulteel V, Vandermeulen G, Suenaert P, Rutgeerts P, et al. Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the β-oxidation pathway. Aliment Pharmacol Ther. 2011; 34(5): 526–32.
27.    De Preter V, Arijs I, Windey K, Vanhove W, Vermeire S, Schuit F, et al. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflamm Bowel Dis. 2012; 18(6): 1127–36.
28.    Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al. . Increased Proportions of Bifidobacterium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. J Clin Microbiol. 2013; 52(2): 398–406.
29.    Kabeerdoss J, Sankaran V, Pugazhendhi S, Ramakrishna B. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case– control study in India. BMC Gastroenterol. 2013; 13(1).
30.    Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos W, Thas O, et al. Butyrate- producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2012; 7(5): 949–61.
31.    Jeon S, Kayama H, Ueda Y, Takahashi T, Asahara T, Tsuji H, et al. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog. 2012; 8(5): e1002714.
32.    Von Schillde MA, Hörmannsperger G, Weiher M, Alpert CA, Hahne H, Bäuerl C, et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe. 2012; 11(4): 387–96.
33.    Hossain MK, Nahar K, Shokryazdan P, Abdullah N, Hamid K, Jahromi MF. Probiotic potential of lactic acid bacteria isolated from cheese, yogurt and poultry faeces. Research J Pharm Tech. 2017; 10(9): 2991–8.
34.    Chen G, Ran X, Li B, Li Y, He D, Huang B, et al. Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model. EbioMedicine. 2018; 30: 317–25.
35.    Mahore JG, Deshpande N V., Trivedi R V., Shelar AS. Ulcerative colitis: Treatment updates. Research J Pharm Tech, 2020; (13): p. 3466–71.
36.    Luceri C, Femia A Pietro, Fazi M, Di Martino C, Zolfanelli F, Dolara P, et al. Effect of butyrate enemas on gene expression profiles and endoscopic/histopathological scores of diverted colorectal mucosa: A randomized trial. Dig Liver Dis. 2016; 48(1): 27–33.
37.    Brotherton C, Taylor A, Bourguignon C, Anderson J. A High Fiber Diet May Improve Bowel Function and HealthRelated Quality of Life in Patients with Crohn’s Disease. Gastroenterol Nurs. 2014; 37(3): 206–16.
38.    Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. Roseburia spp.: A marker of health?. Future Microbiol. 2017; 12(2): 157–70.
39.    Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep. 2017; 7(1).
40.    Park HR. Effect of salivary Streptococci mutans and Lactobacilli levels after uptake of the probiotic for clinical trial. Research J Pharm Technol. 2017; 10(9): 2984–8.
41.    Ragavan ML, Patnaik N, Muniyasamy R, Roy A, Deo L, Das N. Biochemical characterization and enzymatic profiling of potential probiotic yeast strains. Research J Pharm Tech. 2019; 12(8): 3941–4.
42.    Bhagat B, Jagtap A, Hapse S, Pagar H, Wagh A, Kale N. Formulation and Evaluation of Probiotic Gel Containing Anti-inflammatory agent for Treatment of IBDS. Research J Pharm Tech. 2012; 5(3): 387–9.
43.    Swathi K V. Probiotics –A human friendly bacteria. Research J Pharm Tech; 2016; (9): p. 1260–2.
44.    Sudarshan S, Sangeeta S, Sheth N, Roshan P, Ushir Y, Gendle R. Colon Specific Drug Delivery System of Mesalamine for Eradication of Ulcerative Colitis. Research J Pharm Tech. 2009; 2(4): 819–23.
45.    Jain P, Parkhe G. Alternative Colon Targeted Drug Delivery Approaches for the Treatment of Inflammatory Bowel Disease. Research J Pharm Tech. 2020; 13(11): 5562–8.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available