Author(s): Zeina. M. Kadam

Email(s): ,

DOI: 10.52711/0974-360X.2021.00928   

Address: Zeina. M. Kadam
Department of Chemistry, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq.
*Corresponding Author

Published In:   Volume - 14,      Issue - 10,     Year - 2021

The present work analyzed the electrochemical activity of certain amino acids on the modified carbon electrode as-prepared, such as glycine, threonine and aspartic acid. The electrochemical methods used to investigate surface electrode behavior through amino acid molecules at a fixed concentration and temperature of 298.15 K in the perchloric acid electrolyte solution. The findings showed that the surface electrode was ideal for the analysis of glycine, threonine, and aspartic acid molecules. Aspartic acid showed electrochemical activity by voltage and polarization resistance to 0.533 mV and 9.557 ohms, respectively. In addition, the FE-SEM images showed the thin film layer on the surface electrode from the amino acid molecules in different shapes and dense aggregations, more with aspartic acid under optimum experimental conditions.

Cite this article:
Zeina. M. Kadam. Assessment of Electrochemical Activity of some Amino acids on the Modified Carbon Electrode Surface. Research Journal of Pharmacy and Technology 2021; 14(10):5325-9. doi: 10.52711/0974-360X.2021.00928

Zeina. M. Kadam. Assessment of Electrochemical Activity of some Amino acids on the Modified Carbon Electrode Surface. Research Journal of Pharmacy and Technology 2021; 14(10):5325-9. doi: 10.52711/0974-360X.2021.00928   Available on:

1.    Daud, N., Yusof, N. A., Tee, T. W. and Abdullah, A. H. Electrochemical Sensor for As ( III ) Utilizing CNTs / Leucine / Nafion Modified Electrode. Int. J. Electrochem. Sci. 7, 175–185 (2012).
2.    Heli, H., Sattarahmady, N. and Hajjizadeh, M. Electrocatalytic oxidation and electrochemical detection of guanine, l-arginine and l-lysine at a copper nanoparticles-modified electrode. Anal. Methods 6, 6981–6989 (2014).
3.    Lopez, J. P., Girones, J., Mendez, J. A., Puig, J. and Pelach, M. A. Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. J. Polym. Environ. 20, (2012).
4.    Sharifi, Z., Daneshvar, N., Langarudi, M. S. N. and Shirini, F. Comparison of the efficiency of two imidazole-based dicationic ionic liquids as the catalysts in the synthesis of pyran derivatives and Knoevenagel condensations. Res. Chem. Intermed. 45, 4941–4958 (2019).
5.    Kadam, Z., M. and Gwenin, C., D., Polymer Membranes based on Ionophore-impregnated for Nutrients Detection by Electrochemical Methods. Der Pharma Chemica, 9(20):29-33 (2017).
6.    Huerta, F., Morallón, E., Vázquez, J. L., Pérez, J. M. and Aldaz, A. Electrochemical behaviour of amino acids on Pt(hkl). A voltammetric and in situ FTIR study. Part III. Glycine on Pt(100) and Pt(110). J. Electroanal. Chem. 445, 155–164 (1998).
7.    Wang, J. Analytical Electrochemistry, Third Edition. Analytical Electrochemistry, Third Edition (2006). doi:10.1002/0471790303
8.    Dong, S. et al. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode. Anal. Biochem. 381, 199–204 (2008).
9.    Ye, J. and Baldwin, R. P. Determination of Amino Acids and Peptides by Capillary Electrophoresis and Electrochemical Detection at a Copper Electrode. Anal. Chem. 66, 2669–2674 (1994).
10.    Brabec, V. and Mornstein, V. Electrochemical behaviour of proteins at graphite electrodes: II. Electrooxidation of amino acids. Biophys. Chem. 12, 159–165 (1980).
11.    Hampson, N. A., Lee, J. B. and Macdonald, K. I. I ’. 34, 91–99 (1972).
12.    Shadjou, N., Hasanzadeh, M., Saghatforoush, L., Mehdizadeh, R. and Jouyban, A. Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles. Electrochim. Acta 58, 336–347 (2011).
13.    Bayesov, A., Tuleshova, E., Tukibayeva, A., Aibolova, G. and Baineyeva, F. Electrochemical Behavior of Silver Electrode in. (2015).
14.    Nirmal Peiris, T. A., Upul Wijayantha, K. G. and Garcí a-Cañ adas, J. Insights into mechanical compression and the enhancement in performance by Mg(OH) 2 coating in flexible dye sensitized solar cells. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys 16, 2912–2919 (2912).
15.    Mho, S. il and Johnson, D. C. Electrocatalytic response of amino acids at Cu-Mn alloy electrodes. J. Electroanal. Chem. 495, 152–159 (2001).
16.    Castagnola, E. et al. pHEMA encapsulated PEDOT-PSS-CNT microsphere microelectrodes for recording single unit activity in the brain. Front. Neurosci. 10, 1–14 (2016).
17.    Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 42, 4098–4140 (2013).
18.    Kim, J. T. et al. Effects of Insulation Coating with Metal Salt on the Performance of Organic-Inorganic Hybrid Solar Cells. Mol. Cryst. Liq. Cryst. 532, 1/[417]-7/[423] (2010).
19.    Yousif, Q. A., Mahdi, K. M. and Alshamsi, H. A. TiO2/graphene and MWCNT/PEDOT:PSS nanocomposite-based dye-sensitized solar cell: Design, fabrication, characterization, and investigation. Optik (Stuttg). 219, 165294 (2020).
20.    Deo, R. P., Lawrence, N. S. and Wang, J. Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes. Analyst 129, 1076–1081 (2004).
21.    Deore, B. A., Shiigi, H. and Nagaoka, T. Pulsed amperometric detection of underivatized amino acids using polypyrrole modified copper electrode in acidic solution. Talanta 58, 1203–1211 (2002).
22.    Haran, N. H. and Yousif, Q. A. The efficiency of TiO2 nanotube photoanode with graphene nanoplatelets as counter electrode for a dye-sensitised solar cell. Int. J. Ambient Energy 0, 1–14 (2019).
23.    Gamero-Quijano, A., Huerta, F., Salinas-Torres, D., Morall??n, E. and Montilla, F. Electrocatalytic Performance of SiO2-SWCNT Nanocomposites Prepared by Electroassisted Deposition. Electrocatalysis 4, 259–266 (2013).
24.    Yousif, Q. A. and Agbolaghi, S. A Comparison Between Functions of Carbon Nanotube and Reduced Graphene Oxide and Respective Ameliorated Derivatives in Perovskite Solar Cells. Macromol. Res. 00, (2019).
25.    Haran, N. H. and Yousif, Q. A. Characterization and Fabrication of nanowires as a photoanode electrode for DSSC. J. Phys. Conf. Ser. 1294, (2019).
26.    Ituen, E., Mkpenie, V., Moses, E. and Obot, I. Electrochemical kinetics, molecular dynamics, adsorption and anticorrosion behavior of melatonin biomolecule on steel surface in acidic medium. Bioelectrochemistry 129, 42–53 (2019).
27.    Yousif, Q. A. and Al-zhara, A. A. electrochemical methods , SEM-EDS and AFM studies for assessing corrosion inhibition of carbon steel in acidic media. 11, 12619–12630 (2016).
28.    Christoforidis, K. C., Montini, T., Fittipaldi, M., Jaén, J. J. D. and Fornasiero, P. Photocatalytic Hydrogen Production by Boron Modified TiO2/Carbon Nitride Heterojunctions. ChemCatChem 11, 6408–6416 (2019).
29.    Li, X., Deng, S., Lin, T., Xie, X. and Du, G. Cassava starch ternary graft copolymer as a corrosion inhibitor for steel in HCl solution. J. Mater. Res. Technol. 1–12 (2019). doi:10.1016/j.jmrt.2019.12.050
30.    G. J. Abdulsada, Z. M. Kadam, Improvement the chemical structure, Optical and Magnetic Properties of (CuFe2O4) thin films, Journal of Engineering and Applied Sciences, 14 (8), 10251-10255(2019).
31.    Z. M. Kadhim and A. H. Ali, (2018), Studying of Optical and Structural Properties of a Novel Ligand (5-ClCPAI) Thin Films by Spray Pyrolysis Method.  Journal of Engineering and Applied Sciences, 13(14), 11032-11040.
32.    Feliu, S., González, J. A. & Andrade, C. Multiple-electrode method for estimating the polarization resistance in large structures. J. Appl. Electrochem. 26, 305–309 (1996).

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available