Author(s): Sumit Kumar, Dinesh Chandra Bhatt

Email(s): pharm.sumitdhariwal@gmail.com , bhatt_2000@yahoo.com

DOI: 10.5958/0974-360X.2021.00071.8   

Address: Sumit Kumar*, Dinesh Chandra Bhatt
Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Post Box: 38, Hisar-125001, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 1,     Year - 2021


ABSTRACT:
The main objective of the current investigation was the evaluation of the influence of sodium alginate (SA) and calcium chloride concentration on the characteristics of isoniazid loaded nanoparticles (NPs). Isoniazid loaded NPs were fabricated using the ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading & encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70%, respectively. Amongst all batches studied, formulation F-8 showed the best-sustained release of drug at the end of 24 hrs.


Cite this article:
Sumit Kumar, Dinesh Chandra Bhatt. Influence of Sodium Alginate and Calcium Chloride on the Characteristics of Isoniazid Loaded Nanoparticles. Research J. Pharm. and Tech. 2021; 14(1):389-396. doi: 10.5958/0974-360X.2021.00071.8

Cite(Electronic):
Sumit Kumar, Dinesh Chandra Bhatt. Influence of Sodium Alginate and Calcium Chloride on the Characteristics of Isoniazid Loaded Nanoparticles. Research J. Pharm. and Tech. 2021; 14(1):389-396. doi: 10.5958/0974-360X.2021.00071.8   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-1-71


REFERENCES:
1.    Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA 2005; 293(22):2767-2775.
2.    Barberis, I., Bragazzi, N. L., Galluzzo, L., and Martini, M. The history of tuberculosis: From the first historical records to the isolation of Koch's bacillus. Journal of Preventive Medicine and Hygiene 2017:58(1), E9-E12.
3.    Heemskerk D, Caws M, Marais B, Farrar J. Tuberculosis in adults and children. Vol. 2. London: Springer 2015:1–66.
4.    Daniel TM. Pioneers in Medicine and their Impact on Tuberculosis. Rochester, NY: University of Rochester Press 2000, pp. 4, 29, 46-48, 50-51, 74-76.
5.    Fox, W. Compliance of patients and physicians: experiences and lessons from tuberculosis—II. British Medical Journal 1983: 287, 101–105.
6.    Dye C, Williams BG. Eliminating human tuberculosis in the twenty-first century. J R Soc Interface 2008; 5(23):653-62.
7.    Burman WJ, Cohn DL, Rietmeijer CA, Judson FN, Sbarbaro JA, Reves RR. Noncompliance with directly observed therapy for tuberculosis. Epidemiology and effect on the outcome of treatment. Chest 1997; 111:1168–1173.
8.    Pandey R, Khuller GK. Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother 2005; 55: 430–435.
9.    Andersen T, Melvik JE, Gaserod O, Alsberg E, Christensen BE. Correction to ionically gelled alginate foams: Physical properties controlled by operational and macromolecular parameters. Biomacromolecules 2012, 13, 3703–3710.
10.    Fischer, F.G.; Dorfel, H. Polyuronic acids in brown algae. Hoppe-Seyler’s Z. Physiol. Chem. 1955, 302, 186–203.
11.    Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014; 40:1576–1584.
12.    Zhan XP, Wu GH. Characteristics of sodium alginate and its application in food. Food Eng 2011; 1:7–9.
13.    Tonnesen H H, Karlsen J, Alginate in drug delivery systems, Durg Dev. Ind.  Pharm. 28(6) (2002) 621-630.)
14.    Ahmad Z, Pandey R, Sharma S, Khuller GK. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents 2006; 27(5):409-416.
15.    Domagk G, Offe HA, Siefken W: Ein Weiterer Beitrag zur experimentllen Chemotherpie der Tuberkulose (Neoteben).Dtsch Med Wochenschr 1952; 77:573-578.
16.    Benson M W, Stefko PL, Roe MD: Pharmacologic and toxicologic observations on hydrazine derivatives of isonicotinic acid (Rimifon,Marsilid).Am Rev Tuber 1952;65:375-391
17.    Fox HH: The chemical approach to the control of tuberculosis. Science 1952; 116:129-134
18.    Bernstein J, Lott WA, Steinberg BA, Yale HL: Chemotherapy of experimental tuberculosis. V.Isonicotinic hydrazide (Nydrazid) and related compounds Am Rev Tuber 1952; 65:357-364
19.    Editorial: New drugs for tuberculosis. N Engl J Med 1952; 246:797-799.
20.    Marshall S G, Crofton J W, Cruickshank R, Daniels M, Geddes J E, Heaf F R G, Hill A B, Hurford J V, Mitchison D A, Paton W D M, Scadding J G, Smith N, Hart P D A. The Treatment of Pulmonary Tuberculosis with Isoniazid - an Interim Report to the Medical Research Council by Their Tuberculosis Chemotherapy Trials Committee. Br. Med. J. 1952, 2 (4787), 736–746.
21.    Medical Research Council. Changes in Isoniazid Resistance of Tubercle Bacilli After Cessation of Treatment. Thorax 1954, 9, 254–259.
22.    Matei L, Bleotu C, Baciu I, Draghici C, Ionita P, Paun A, Chifiriuc M, Sbarcea A, Zarafu I. Synthesis and Bioevaluation of Some New Isoniazid Derivatives. Bioorg. Med. Chem. 2013, 21 (17), 5355–5361.
23.    Kumar D, Beena, Khare G, Kidwai S, Tyagi A K, Singh R, Rawat D S. Synthesis of Novel 1,2,3-Triazole Derivatives of Isoniazid and Their in Vitro and in Vivo Antimycobacterial Activity Evaluation. Eur. J. Med. Chem. 2014, 81, 301–313.
24.    Martins F, Santos S, Ventura C, Elvas-Leit~ao, R, Santos L, Vitorino S, Reis M, Miranda V, Correia H F, Aires-de-Sousa J, Kovalishyn V, Latino D A R S, Ramos J, Viveiros M. Design, Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Eur. J. Med. Chem. 2014, 81, 119–138.
25.    Fernandes G F, Souza P C, Marino L B, Chegaev K, Gugliemo S, Lazzarato L, Fruttero R, Chung M C, Pavan F R, Santos J L. Synthesis and Biological Activity of Furoxan Derivatives against Mycobacterium Tuberculosis. Eur. J. Med. Chem. 2016, 123, 523–531.
26.    Rangaka M, Wilkinson R, Boulle A, Glynn J, Fielding K, van Cutsem G, Wilkinson K, Goliath R, Mathee S, Goemaere E, Maartens, G. Isoniazid plus Antiretroviral Therapy to Prevent Tuberculosis: A Randomised Double-Blind, Placebo-Controlled Trial. Lancet 2014, 384, 682–690.
27.    Villarino M, Scott N, Weis S, Weiner M, Conde M, Jones B, Nachman S, Oliveira R, Moro R, Shang N, Goldberg S V, Sterling T R. Treatment for Preventing Tuberculosis in Children and Adolescents: A Randomized Clinical Trial of a 3-Month, 12-Dose Regimen of a Combination of Rifapentine and Isoniazid. JAMA Pediatr. 2015, 169 (3), 247–255.
28.    Stennis N, Burzynski J, Herbert C, Nilsen D, Macaraig M. Treatment for Tuberculosis Infection With 3 Months of Isoniazid and Rifapentine in New York City Health Department Clinics. Clin. Infect. Dis. 2016, 62 (1), 53–59.
29.    Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014; 66:2–25.
30.    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad, OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008; 83:761–769.
31.    Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: his¬tory, sources, toxicity, and regulations. Beilstein J Nanotechnol. 2018; 9:1050–1074.
32.    Khalid A, Bashir S, Sohail M, Amirzada MI. Characterization of doxorubicin nanoparticles prepared by ionic gelation. Trop J Pharm Res 2018; 17(12):2329-2334.
33.    Chen Y, Ye Q, Gong T, Kuang J, Li S. Preparation of Doxorubicin-loading Sodium Alginate Nanoparticles and its Anticancer Activity in HepG2 cells. J Pharm Biomed Sci 2019; 8(5):79-83.
34.    Sailaja AK, Amareshwar P, Chakravarty P. Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci. 2011;3(2):45-50.
35.    Rajaram S, Natham R. Influence of Formulation and Process Variables on the Formation of Rifampicin Nanoparticles by Ionic Gelation Technique. RJPBCS 2013; 4: 820-832.
36.    Gaikwad A, Tamizhrasi S, Sorti A, Gavali P, Mehare G. Formulation and in vitro characterization of polymethacrylic acid nanoparticle containing frusemide. Int J Pharmtech Res 2010; 2: 300-304.
37.    Tiwari S, Chaturvedi AP, Tripathi YB, and Mishra B. Macrophage-Specific Targeting of Isoniazid Through Mannosylated Gelatin Microspheres.AAPS 2011; PharmSciTech, 12(3), 900–908. doi:10.1208/s12249-011-9654-6
38.    Bathool A, Gowda D. Vishakante, Mohammed S. Khan and H. G. Shivakumar. Development And Characterization Of Atorvastatin Calcium Loaded Chitosan Nanoparticles For Sustain Drug Delivery. Adv Mat Lett 2012; 3 (6): 466-470
39.    Nagajyothi B and Babu MK. Design and development of glipizide fast dissolving tablets using natural gum superdisintegrant. AJPCR 2014; 7:144-148

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available