Author(s): Godbole Mangesh D., Sabale Prafulla M., Mathur Vijay B.

Email(s): mdgodble@gmail.com

DOI: 10.5958/0974-360X.2020.00793.3   

Address: Godbole Mangesh D.1,2*, Sabale Prafulla M.1, Mathur Vijay B.3
1Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033 [M.S.], India.
2Kamla Nehru College of Pharmacy Butibori Nagpur-441110 [M.S.], India.
3Sharad Pawar College of Pharmacy Wanadongri Nagpur-441110 [M.S.], India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 9,     Year - 2020


ABSTRACT:
Acquired Immunodeficiency Syndrome’ is a collection of symptoms and opportunistic infections from the specific damage to the immune system caused by the HIV. Highly Active Anti Retroviral Therapy minimizes the development of resistant strains, reduces mortality and the morbidity of HIV infection and increases the life expectancy of infected individuals. However, due to mutation in HIV and multiple drug resistance develops thrust for the development of novel drug delivery. Liposomes are concentric lipid bilayers and offers hydrophillic as well hydrophobic drug loading in aqueous region and within the bilayer of the vesicles respectively. These nanocarriers emerged as potential anti-HIV nanocarriers due to their property of targeting drug to HIV reservoir. Encapsulation of antiretroviral agents in to liposomes insures delivery of drug at targeted site, protects degradation of drug during circulation and improves pharmacokinetic and tissue distribution patterns of the drug. Liposome improves bioavailability and residence time of encapsulated drug at the target site. The vesicle size, surface charge, lipid composition and methods of preparation significantly affect the liposomal drug entrapment and targeting efficiency. In the present article, we have discussed origin, types and transmission of HIV, FDA approved drug in the treatment of HIV/AIDS, and role of liposomes in the treatment of this disastrous disease.


Cite this article:
Godbole Mangesh D., Sabale Prafulla M., Mathur Vijay B. Exploring the use of liposomal drug delivery system for antiretroviral drugs in HIV/AIDS therapy. Research J. Pharm. and Tech 2020; 13(9):4499-4504. doi: 10.5958/0974-360X.2020.00793.3

Cite(Electronic):
Godbole Mangesh D., Sabale Prafulla M., Mathur Vijay B. Exploring the use of liposomal drug delivery system for antiretroviral drugs in HIV/AIDS therapy. Research J. Pharm. and Tech 2020; 13(9):4499-4504. doi: 10.5958/0974-360X.2020.00793.3   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-9-81


REFERENCES:
1.    Bothiraja C, Shinde MB, Rajalakshmi S, Pawar AP. In Vitro Anti-HIV-Type 1 and Antioxidant activity of Emblica officinalis. Research Journal of Pharmacy and Technology. 2009; 2(3): 556-558.
2.    https://www.avert.org/professionals/hiv-around-world/asia-pacific/india. (Assessed on 23/04/2020).
3.    HIV and AIDS in India. Global information and education on HIV and AIDS.https://www.avert.org/professionals/hiv-around-world/asia-pacific/india, (Accessed on 23/04/2020).
4.    Gupta U, Jain NK. Non-polymeric Nano-Carriers in HIV/AIDS Drug Delivery and Targeting. Advanced Drug Delivery Reviews. 2010; 62: 478-490.
5.    Mallipeddi R, Rohan LC. Progress in Antiretroviral Drug Delivery Using Nanotechnology. International Journal of Nanomedicine. 2010; 5: 533-547.
6.    Fauci AS. The Human Immunodeficiency Virus: Infectivity and Mechanisms of Pathogenesis. Science. 1988; 239: 617-622.
7.    Worobey M, Telfer P, Souquière S, Hunter M, Coleman CA, Metzger MJ, et al., Island biogeography reveals the deep history of SIV. Science. 2010; 329(5998):1487. doi: 10.1126/science.1193550.
8.    Sharp PM, Hahn BH. 'Origins of HIV and the AIDS pandemic'. Cold Spring Harb Perspect Med. 2011; 1(1):a006841
9.    NACA (2017) ‘National Strategic Framework on HIV and AIDS: 2017 -2021’ [pdf]
10.    Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell. 1996;86:367-77.
11.    Sharp PM. The evolution of HIV-1 and /the origin of AIDS. Philos Trans R Soc Lond B Biol Sci. 2010;365(1552):2487-249.
12.    Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 2006;3:613-628.
13.    Satyanarayana K, Srivastava S. Patent pooling for promoting access to antiretroviral drugs (ARVs)-A strategic option for India. Open AIDS J. 2010;4:41-53.
14.    Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993;57:183-89.
15.    Nicholson JK, Cross GD, Callaway CS, McDougal JS. In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). J Immunol. 1986;137:323-29.
16.    Von Briesen H, Andreesen R, Esser R, Brugger W, Meichsner C, Becker K, et al. Infection of monocytes/ macrophages by HIV in vitro. Res Virol. 1990;141:225-31.
17.    Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986;233:215-19.
18.    Thomas JR. HIV/AIDS drugs, patents and TRIPS agreement: Issues and options. CRS Report for the US Congress. 2001.
19.    Walensky RP, Wood R, Weinstein MC, Martinson NA, Losina E. Scaling up antiretroviral therapy in South Africa: the impact of speed on survival. J Infect Dis. 2008;197:1324-32.
20.    Li J, Tang S, Hewlett I, Yang M. HIV-1 capsid protein and cyclophilin as new targets for anti-AIDS therapeutic agents. Infect Disord Drug Targets. 2007;7:238-44.
21.    Holtgrave DR. Causes of the decline in AIDS deaths, United States,1995-2002: Prevention, treatment or both. Int J STD AIDS. 2005;16(12):777-81.
22.    Rathbun RC, Lockhart SM, Stephens JR. Current HIV treatment guidelines: An overview. Curr Pharm Des. 2006;12:1045-63.
23.    Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D. The challenge of finding a cure for HIV infection. Sci. 2009;323:1304-07.
24.    Derle DV, Kasliwal NH, Gandhi PP, Yeole DR. Development, Characterization and Evaluation of Niosomes and Liposomes of Bacitracin Zinc. Research J. Pharm. and Tech. 2010; 3(4): 1295-1300.
25.    Girhepunje K, Pal R, Upadhayay A, Thirumoorthy N. Transdermal Delivery of Ciclopirox Olamine via Ethosomal and Liposomal Carrier. Research J. Pharm. and Tech. 2011; 4(8): 1207-1211.
26.    Khale A, Bajaj A. Liposomal Nebulising Solutions of Salbutamol Sulphate - A Characterisation Study. Research J. Pharm. and Tech. 2011; 4(9): 1373-1378.
27.    Yasmin BM, Rafi MS, Abbulu K, Sudhakar M. Ketorolac Tromethamine Loaded Liposomes: Development, Characterization and in Vitro Evaluation. Research J. Pharm. and Tech. 2011; 4(11): 1766-1771.
28.    Madoria N, Pathodiya M, Tiwari A. Aceclofenac Loaded Vesicles: A Comparative Study between Various Vesicular Systems. Research J. Pharm. and Tech. 2012; 5(8): 1130-1138.
29.    Jose PD, Radhika DL, Ariya R, Thabitha K. Formulation and In vitro Characterization of Ketoconazole Liposomal Gel for Transdermal Delivery. Research J. Pharm. and Tech. 2017; 10(1): 205-215.
30.    Singh R, Upadhayay A, Kale MK. Effect of Liposomes as a carrier on Pharmacokinetics of Cisplatin. Research J. Pharm. and Tech. 2018; 11(11): 5073-5077.
31.    Du S, Deng Y. Studies on the encapsulation of oxymatrine into liposomes by ethanol injection and pH gradient method. Drug Dev Ind Pharm. 2006; 32:791-97.
32.    Jahn A, Vreeland WN, Don LD, Locascio LE, Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir. 2007;23:6289-93.
33.    Peschka R, Dennehy C, Szoka Jr F. A simple in vitro model to study the release kinetics of liposome encapsulated material. J Control Release. 1998;56:41-51.
34.    Szoka FC Jr, Milholland D, Barza M. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated Amphotericin B. Antimicrob Agents Chemother. 1987;31:421-29.
35.    Godbole MD, Mathur VB. Selection of phospholipid and method of formulation for optimum entrapment and release of lamivudine from liposome. Journal of Drug Delivery and Therapeutics. 2018; 8(5-s):175-183. http://dx.doi.org/10.22270/jddt.v8i5-s.1935.
36.    Betageri GV, Burrell LS. Stability of Antibody-Bearing Liposomes Containing Dideoxyinosine Triphosphate. Int J Pharm.. 1993; 98: 149-155.
37.    Phillips NC, Skamene E, Tsoukas C. Liposomal encapsulation of 3’-azido-3’-deoxythymidine (AZT) results in decreased bone marrow toxicity and enhanced activity against murine AIDS-induced immunosuppression. J Acquir Immune Defic Syndr. 1991;4:959-966
38.    Jin SX, Bi DZ, Wang J, Wang YZ, Hu HG, Deng YH. Pharmacokinetics and tissue distribution of Zidovudine in rats following intravenous administration of Zidovudine myristate loaded liposomes. Pharmazie. 2005;60:840-43.
39.    Jain S, Tiwary AK, Jain NK. Sustained and targeted delivery of an anti-HIV agent using elastic liposomal formulation: mechanism of action. Curr Drug Deliv. 2006;3(2):157-66.
40.    Jain S, Tiwary AK, Jain NK. PEGylated elastic liposomal formulation for lymphatic targeting of zidovudine. Curr Drug Deliv. 2008; 5: 275-81.
41.    Vyas SP, Subhedar R, Jain S. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J Pharm Pharmacol. 2006;58:321-26.
42.    Garg M, Jain NK. Reduced hematopoietic toxicity enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Target. 2006;14:1-11.
43.    Wu HB, Deng YH, Wang SN, Zhou XY, Wang N, Shi L. The distribution of azidothymidine palmitate galactosylated liposomes in mice, Acta Pharm Sin. 2007: 42: 538-544.
44.    Kaur CD, Nahar M, Jain NK. Lymphatic Targeting of Zidovudine Using Surface Engineered Liposomes. J Drug Target. 2008; 16: 798-805.
45.    Bhambere DS, Doijad R, Deshmukh N, Manvi FV, Kankate R. Liposomal drug delivery system for zidovudine: design and characterization. Int J Drug Dev Res. 2010; 2:8-14.
46.    Garg BR, Kumar A, Garg M, Pandit J, Jain NK. Double liposomes mediated dual therapy of aids related opportunistic fungal infections and AIDS. Int J Pharm Sci Res. 2011;2:620-36.
47.    Saiyed ZM, Gandhi NH. Magnetic nanoformulation of Azidothymidine 5’-triphosphate for targeted delivery across the blood brain barrier. Int J Nanomed. 2010;5:157-66.
48.    Pai SR, Devi KV. Lamivudine liposomes for transdermal delivery-Formulation, characterization, stability and in vitro evaluation. Int J pharm Sci Nano. 2009; 1(4):317-26.
49.    Zhong Y, Wang J, Wang Y, Wu B. Preparation and evaluation of liposome-encapsulated codrug LMX. Int J Pharm. 2012;438:240-48.
50.    Bhamre V, Sherkar D, Derle D, Narkhede M, Nehete J. Stavudine sintered matrix tablet: formulation and evaluation. Research J Pharm and Tech. 2011; 4(9): 1455-1460.
51.    Katragadda A, Bridgman R, Betageri G. Effect of Liposome Composition and Cholesterol on the Cellular Uptake of Stavudine by Human Monocyte/Macrophages. Cell Mol Biol Lett. 2000; 5: 483-493.
52.    Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK. Stavudine loaded mannosylated liposomes: in vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol. 2006;58:605-16.
53.    Garg M, Dutta T, Jain NK. Stability Study of Stavudine-Loaded O-Palmitoyl-Anchored Carbohydrate-Coated Liposomes. AAPS PharmSciTech. 2007; 8: E1-E8.
54.    Garg M, Dutta T, Jain NK. Reduced Hepatic Toxicity, Enhanced Cellular Uptake and Altered Pharmacokinetics of Stavudine Loaded Galactosylated Liposomes. Eur J Pharm Biopharm. 2007; 67: 76-85.
55.    Garg M, Garg BR, Jain S, Mishra P, Sharma RK, Mishra AK, Dutta T, Jain NK. Radiolabeling, Pharmacoscintigraphic Evaluation and Antiretroviral Efficacy of Stavudine Loaded 99mTc Labeled Galactosylated Liposomes. Eur J Pharm Sci. 2008; 33: 271-281.
56.    Faulds D, Brogden RN. Didanosine: A Review of its Antiviral Activity, Pharmacokinetic Properties and Therapeutic Potential in Human Immunodeficiency Virus Infection. Drugs. 1992; 44: 94-116.
57.    Desormeaux A, Harvie P, Perron S, Makabi-Panzu B, Beauchamp D, Tremblay M, Poulin L, Bergeron MG. Antiviral Efficacy, Intracellular Uptake And Pharmacokinetics of Free and Liposome-Encapsulated 2', 3'-Dideoxyinosine. AIDS. 1994; 8: 1545-1553.
58.    Harvie P, Desormeaux A, Gagne N, Tremblay M, Poulin L, Beauchamp D, Bergeron MG. 2’, 3’- Lymphoid Tissues Targeting Of Liposome-Encapsulated Dideoxyinosine. AIDS. 1995; 9: 701-707.
59.    Harvie P, Desormeaux A, Bergeron MC, Tremblay M, Beauchamp D, Poulin L, Bergeron MG. Comparative pharmacokinetics, distributions in tissue, and interactions with blood proteins of conventional and sterically stabilized liposomes containing 2’, 3’-dideoxyinosine, Antimicrob Agents Chemother. 1996;40:225–229.
60.    Kompella UB, Aukunuru JV, Betageri GV. Effect of Neutral Liposomes on Corneal and Conjunctival Transport of Didanosine. Drug Deliv. 1999; 6: 9-14.
61.    Lalanne M, Paci A, Andrieux K, Dereuddre-Bosquet N, Clayette P, Deroussent A, Re M, Vassal G, Couvreur P, Desmaele D. Synthesis and biological evaluation of two glycerolipidic prodrugs of didanosine for direct lymphaticdelivery against HIV. Bioorg Med Chem Lett. 2007; 17: 2237-2240.
62.    Lalanne M, Paci A, Andrieux K, Paci A, Besnard M, Ré M, Bourgaux C, Ollivon M, Couvreur P, Desmaële D. Liposomal formulation of a glycerolipidic prodrug for lymphatic delivery of didanosine via oral route. Int. J. Pharm. 2007;344:62-70.
63.    Dipali SR, Singh M, Betageri GV. Long-circulating liposomes of 2′, 3′-dideoxyinosine: formulation and stability. Drug Deliv. 1996;3:279-87.
64.    Kim S, Scheerer S, Geyer MA, Howell SB. Direct Cerebrospinal Fluid Delivery of an Antiretroviral Agent Using Multivesicular Liposomes. J Infect Dis. 1990; 162: 750-752.
65.    Szebeni J, Wahl SM, Betageri GV, Wahl LM, Gartner S, Popovic M, Parker RJ, Black CD, Weinstein JN. Inhibition of HIV-1 in monocyte/macrophage cultures by 2',3'-dideoxycytidine-5'-triphosphate, free and in liposomes. AIDS Res Hum Retroviruses. 1990;6(5):691-702.
66.    Oussoren C, Magnani M, Fraternale A, Casabianca A, Chiarantini L, Ingebrigsten R, et al. Liposomes as carriers of the antiretroviral agent dideoxycytidine-5'-triphosphate.Int J Pharm. 1999;180(2):261-70
67.    Makabi-Panzu B, Lessard C, Perron S, Désormeaux A, Tremblay M, Poulin L, Beauchamp D, Bergeron MG. Comparison of Cellular Accumulation, Tissue Distribution, and Anti-HIV Activity of Free and Liposomal 2', 3'-Dideoxycytidine, AIDS Res. Hum. Retrovir. 1994; 10: 1463-1470.
68.    Makabi-Panzu B, Lessard C, Beauchamp D, Desormeaux A, Poulin L, Tremblay M, Bergeron MG. Uptake and Binding Of Liposomal 2’, 3’- Dideoxycytidine by RAW 264.7 Cells: A Three-Step Process, J Acquir Immune Defic Syndr Human Retrovirol. 1995; 8: 227-235.
69.    Makabi-Panzu B, Gourde P, Desormeaux A, Bergeron MG. Intracellular and Serum Stability of Liposomal 2’, 3’-Dideoxycytidine. Effect of Lipid Composition. Cell. Mol. Biol. (Noisy-le-grand) 1998; 44: 277-284.
70.    Gagne JF, Desormeaux A, Perron S, Tremblay MJ, Bergeron MG. Targeted delivery of Indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim Biophys Acta. 2002;1558:198-210.
71.    Kinman L,, Brodie SJ, Tsai CC, Bui T, Larsen K, Schmidt A, Anderson D, Morton WR, Hu SL, Ho RJ. Lipid-Drug Association Enhanced HIV-1 Protease Inhibitor Indinavir Localization in Lymphoid Tissues and Viral Load Reduction: A Proof of Concept Study in HIV-2287-Infected Macaques. J. Acquir. Immune. Defic. Syndr. 2003; 34: 387-397.
72.    Kapitza SB, Michel BR, Hoogevest P, Leigh ML, Imanidis G. Absorption of Poorly Water Soluble Drugs Subject to Apical Efflux Using Phospholipids as Solubilizers in the Caco-2 Cell Model. Eur. J. Pharm. Biopharm. 2007; 66: 146-158.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available