Author(s): Hanaa Labiad, Ahmed Aljaiyash, Mohamed Ghanmi, Badr Satrani, Aziz Et-tahir, Mahjoub Aouane, Mohamed Fadli, Abdelaziz Chaouch


DOI: 10.5958/0974-360X.2020.00719.2   

Address: Hanaa Labiad1*, Ahmed Aljaiyash4, Mohamed Ghanmi3, Badr Satrani3, Aziz Et-tahir5, Mahjoub Aouane2, Mohamed Fadli1, and Abdelaziz Chaouch2
1Ibn Tofail University, Faculty of Science, Department of Biology, Laboratory of Biodiversity and Natural Resources, Kenitra, Morocco.
2Ibn Tofail University, Faculty of Science, Department of Chemistry, Laboratory of Applied Chemistry and Quality Control, Kenitra, Morocco.
3Forest Research Center, Rabat, Morocco.
4Omar Almukhtar University, Faculty of Pharmacy, Libya.
5Mohammed V University in Rabat, High School of Technology of Salé, Material, Energetic and Acoustic Team, Salé, Morocco.
*Corresponding Author

Published In:   Volume - 13,      Issue - 9,     Year - 2020

Even with the emerging modern medicine, traditional pharmacopoeia still has a great significance in primary health care in the Mediterranean countries. The purpose of this study is to investigate the provenance effect on the chemical profile and evaluate the antimicrobial and antioxidant activities of essential oils (EO) of Laurus nobilis (LN) harvested in two different forest regions in Morocco (Moulay Abdessalam/North of Morocco and Beni Mellal 'Tagzirt'/Middle Atlas forests). The chemical analysis of the composition was performed using GC and GC-MS techniques. The antioxidant effects of the EOs were analyzed using 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing/antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (ABTS). Moreover, the antimicrobial activity of the EOs was carried out against four wood-rot fungi, three molds, and four bacterial strains. The best EO yield of the aerial part of LN was obtained from Tagzirt forest. GC and GC-MS analysis identified the 1,8-cineole, linalool, myrtenal, ?-terpineol, sabinene, eugenol, a-pinene and ß-pinene as major compounds. In addition, the EO from LN of Tagzirt forest was found to have high antioxidant potential: 67.41±7.27 mg TE/g EO, 3.15±0.14 mg AAE/g EO and 126.13±10.69 mg TE/g EO for DPPH, FRAP and ABTS, respectively. Moreover, the EO from LN of Moulay Abdessalam forest showed 24.96 ± 2.41 mg TE/g EO for DPPH, 2.35±0.44 mg TE/g EO for FRAP, and 101.76±1.02 mg TE/g EO for ABTS. Also our study demonstrated that, the EO extracted from the laurel plant of the Tagzirt in Beni Mellal region was the most effective against the selected microorganisms. Our study showed promising antimicrobial and antioxidant properties of the EOs from LN. These findings will have potential impact in treating bacterial infections and prevent oxidative stress associated with several diseases if validated in vivo.

Cite this article:
Hanaa Labiad, Ahmed Aljaiyash, Mohamed Ghanmi, Badr Satrani, Aziz Et-tahir, Mahjoub Aouane, Mohamed Fadli, Abdelaziz Chaouch. Exploring the provenance effect on Chemical composition and Pharmacological bioactivity of the Moroccan essential oils of Laurus nobilis. Research J. Pharm. and Tech 2020; 13(9):4067-4076. doi: 10.5958/0974-360X.2020.00719.2

Hanaa Labiad, Ahmed Aljaiyash, Mohamed Ghanmi, Badr Satrani, Aziz Et-tahir, Mahjoub Aouane, Mohamed Fadli, Abdelaziz Chaouch. Exploring the provenance effect on Chemical composition and Pharmacological bioactivity of the Moroccan essential oils of Laurus nobilis. Research J. Pharm. and Tech 2020; 13(9):4067-4076. doi: 10.5958/0974-360X.2020.00719.2   Available on:

1.    Byard RW. A review of potential forensic significance of traditional herbal medicines. Journal of Forensic Sciences. 2010; 55(1): 89-92.
2.    Desprès C. Soigner par la nature à la Réunion: l’usage des plantes médicinales comme recours thérapeutique dans la prise en charge du cancer, Anthropologie & Santé Revue internationale francophone d’anthropologie de la santé. Paris, 2011;  pp. 1-23.
3.    Adossides A. Projet “Assistance au Recensement Agricole” Plantes Aromatiques et Médicinales. Direction des Etudes et de la Coordination, Ministère de l’Agriculture, Liban, 2013.
4.    Quyou A. Mise au point d’une base de données sur les plantes médicinales. Exemple d’utilisation pratique de cette base. Thèse de doct. Univ.Ibn tofail. Fac. Sci. Maroc, 2003; pp.110.
5.    Hmamouchi M. Plantes alimentaires, aromatiques, condimentaires, médicinales et toxiques au Maroc. Heywood V.H. (ed.), Skoula M. (ed.). Identification of wild food and non-food plantsof the Mediterranean region. Chania : CIHEAM, Cahiers Option Méditerranéennes; n.23, Maroc, 1997; pp. 89-108.
6.    Benkhnigue O et al. Etude ethnobotanique des plantes médicinales dans la région de Mechraâ Bel Ksiri (Region du Gharb du Maroc). Acta Botanica Barcinonensia. 2011; 53: 191-216.
7.    Tabanca N et al. Comparative Investigation of Umbellularia californica and Laurus nobilis Leaf Essential Oils and Identification of Constituents Active against Aedes aegypti. Journal of Agricultural and Food Chemestry. 2013; 61(50): 12283−12291.
8.    Amin G et al. Influence of phenological stages and method of distillation on Iranian cultivated bay leaves volatile oil. Pakistan Journal of Biological Sciences. 2007; 10(17): 2895–2899.
9.    Sellami IH et al. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chemistry. 2011; 126(2): 691-697.
10.    Aafi A, Taleb MS, Fechtal M. Espèces remarquables de la flore du Maroc, Centre National de la Recherche Forestière, Maroc, 2002.
11.    Chen H et al. Sesquiterpenes Inhibiting the Microglial Activation from Laurus nobilis. Journal of Agricultural and Food Chemistry. 2014; 62(20): 4784−4788.  
12.    Julianti E et al. Sesquiterpenes from the leaves of Laurus nobilis L. Phytochemistry. 2012; 80: 70–76.
13.    Dall’Acqua S et al. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chemical and Pharmaceutical Bulletin. 2006; 54(8): 1187–1189.
14.    Garg SN, Siddiqui MS, Agarwal SK. New fatty acid esters and hydroxy ketones from fruits of Laurus nobilis. Journal of Natural Products. 1992; 55(9): 1315−1319.
15.    Ozcan M and Chalchat JC. Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. Journal of Medicinal Food. 2005; 8(3): 408–411.
16.    Ali-Shtayeh MS,Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: A classification of the healing potential of medicinal plants. Journal of Ethnopharmacology. 2000; 73(1-2): 221–232.
17.    Stein WI. Umbellularia californica (Hook. & Arn.) Nutt. California-laurel. In The Woody Plant Seed Manual, 5th ed.; Bonner, F., Karrfalt, R., Eds.; USDA Forest Service: Washington, DC, 2008; pp. 1150−1153.
18.    Bremness L. Plantes Aromatiques et Médicinales. Edition originale, Eyewitness Handbook- Herbs. Larousse, Paris, 2005; pp. 61.
19.    Sijilmassi A. Les plantes médicinales du Maroc. 8éme ED. Fennec. 141 p. Casablanca, 2011.
20.    Santoyo S et al. Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. chemical and functional characterization. European Food Research and Technology. 2006; 222(5): 565–571.
21.    Derwich E, Benziane Z, Boukir A. Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Australian Journal of Basic and Applied Sciences. 2009; 3(4): 3818–3824.
22.    Ozcan B et al. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology. 2010, 31(5): 637–641.
23.    Dhifi W et al. Phytochemical composition and antioxidant activity of Tunisian Laurus nobilis. Pakistan Journal of Pharmaceutical Sciences. 2018; 31(6): 2397-2402.  
24.    Medeiros-Fonseca B et al. Laurus nobilis (laurel) aqueous leaf extract's toxicological and anti-tumor activities in HPV16-transgenic mice. Food and Function. 2018; 15(8): 4419-4428.  
25.    Gümüş D. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal. International Journal of Phytoremediation. 2019; 7(6):1-8.
26.    AFNOR. Huiles essentielles. Echantillonnage et méthodes d’analyse (Tome1)– Monographies relatives aux huiles essentielles (Tome 2. Volumes 1 et 2) mars. 2000.
27.    Clevenger JF. Apparatus for volatile oil determination: Description of New Type Clevenger. Journal of the American Pharmaceutical Association.1928; 17(4): 345-349.
28.    Pharmacopée européenne. Huiles essentielles. Aetherolea (01) : 2098, 2008.
29.    Ghanmi M et al. Effet de la date de récolte sur le rendement, la composition chimique et la bioactivité des huiles essentielles de l’armoise blanche (Artemisia herba-alba) de la région de Guerçif (Maroc oriental). Phytothérapie. 2010; 8(5): 295–301.
30.    Kovàts E. Gas chromatographic characterization of organic substances in the retention index system. Advances in Chromatography.1965; 1: 229-247.  
31.     Amarti F et al. Composition chimique et activité antimicrobienne des huiles essentielles de Thymus algeriensis Boiss. & Reut. et Thymus ciliatus (Desf.) Benth. du Maroc,  Biotechnology, Agronomy, Society and Environment. 2010; 14(1):141-148.
32.    Remmal A et al. Improved methode for determination of antimicrobial activity of essential oils in agar medium. Journal of Essential Oil Research.1993a; 5(2) : 179-184.
33.    Satrani B et al. Composition chimique et activité antimicrobienne des huiles essentielles de Satureja calamintha et Satureja alpina du Maroc. Annales des falsifications et de l'expertise chimique et toxicologique. 2001; 956: 241-250.
34.    Lister E and Wilson P. Measurement of total phenolics and ABTS assay for antioxidant activity; Crop Research Institute: Lincoln, New Zealand. Personal communication, 2001.
35.    Marmouzi I et al. Nutritional characteristics, biochemical composition and antioxidant activities of Moroccan Oat varieties. Journal of Food Measurement. 2015; 10(1): 156–165.
36.    RE R et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999; 26(9-10): 1231-1237.
37.    Ben Jemaa JM, Brinsi C, Larbi M. Chemical composition and insecticidal activities of Laurus nobilis (L.) essential oils from Tunisia and Morocco against adults of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Journal of stored products research. 2012; 81: 89-96.
38.    Cherrat L et al. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of Science of Food and Agriculture. 2013; 94(6): 1197-1204.
39.    Al-Kalaldeh JZ, Abu-Dahab R., Afifi FU. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutrition Research. 2010; 30(4): 271–278.
40.    Nurbas M and Bal Y. Recovery of fixed and volatile oils from laurus nobilis L. fruit and leaves by solvent extraction. Eng. & Arch. Fac. Eskişehir Osmangazi University, Vol.18, No. 2. Turkey, 2005.
41.    Özek T. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil. Records of Natural Products. 2012; 6(2):135-143.
42.    Shokoohinia Y et al. Seasonal variations of Laurus nobilis L. leaves volatile oil components in Isfahan. Iran. Research Journal of Pharmacognosy. 2014; 1(3):1-6.
43.    Kovacevic NN, Simic, MD, Ristic MS. Essential oil of L. nobilis from Montenegro. Chemistry of Natural Compounds. 2007; 43(4): 408-411.
44.    Marzouki H et al. Essential oil composition and variability of Laurus nobilis L. growing in Tunisia, comparison and chemometric investigation of different plant organs. Natural Product Research. 2009; 23(4): 343-354.
45.    Vilela J et al. Antimicrobial effect of essential oils of Laurus nobilis L. and Rosmarinus officinallis L. on shelf-life of minced “Maronesa” beef stored under different packaging conditions, Food Packaging and Shelf Life. 2016; 8: 71–80.
46.    Mansouri N et al. Valorisation des huiles essentielles de J.thurifera et J. oxycedrus du Maroc. Phytothérapie. 2010; 8(3): 166-170.  
47.    Khiya A et al. Effet de la provenance sur la qualité chimique et microbiologique des huiles essentielles de Rosmarinus Officinalis L. du Maroc; Phytothérapie. 2014;12(6): 349-347.
48.    Hokwerda H et al. Composition of the essential oils of Laurus nobilis, L. nobilis var. angustifolia and Laurus azorica. Planta Medica.1982; 44(2):116-119.
49.    Ghannadi A. Lauri Folium. In: “Iranian Herbal Pharmacopoeia”.Tehran: Publications of Iranian Ministry of Health. 2002.
50.    Verdian-rizi M and Hadjiakhoondi A. Essential oil composition of Laurus nobilis L. of different growth stages growing in Iran. Zeitschrift für Naturforschung C, Journal of biosciences. 2008; 63(11-12): 785-788.
51.    Marzouki H et al. Seasonal and geographical variation of Laurus nobilis L. essential oil from Tunisia. The Open Natural Products Journal. 2009; 2(1): 86-91.
52.    Moghtader M and Salari H. Comparative survey on the essential oil composition from the leaves and flowers of Laurus nobilis L. from Kerman province. Journal of Ecology and the Natural Environment. 2012; 4(6):150-153.
53.    Basak SS and Candan F. Effect of Laurus nobilis L. Essential Oil and its Main Components on α-glucosidase and Reactive Oxygen Species Scavenging Activity. Iranian Journal of Pharmaceutical Research. 2013; 12(2): 367–379.
54.    Abu-Dahab R, Kasabri V, Afifi FU. Evaluation of the Volatile Oil Composition and Antiproliferative Activity of Laurus nobilis L. (Lauraceae) on Breast Cancer Cell Line Models from Jurdani. Records of Natural Products. 2014; 8(2): 136-147.
55.    Macchioni F et al. Composition and Acaricidal Activity of Laurus novocanariensis and Laurus nobilis. Essential oils Against Psoroptes cuniculi. Journal of Essential Oil Research. 2006; 18(1): 111-114.  
56.    Senatore F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). Journal of Agricultural and Food Chemistry. 1996, 44(5): 1327-1332.
57.    Kokkini S et al. Autumn essential oils of Greek oregano. Phytochemistry.1997; 44(5): 883-886.
58.    Russo M et al. Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link)) a preliminary evaluation of their use in chemotaxonomy by cluster analysis. Journal of Agricultural and Food Chemistry. 1998; 46(9): 3741-3746.
59.    Thompson JD et al. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. Journal of Chemical Ecology. 2003, 29(4): 859-880.
60.    Karousou R, Koureas DN, Kokkini S. Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in Natura 2000 sites of Crete. Photochemistry. 2005; 66(22): 2668-2673.
61.    Benjilali B et al. Method to study antimicrobial effects of essential oils: application to fungical activity of six Moroccan essences. Journal of Food Protection.1984; 47(10):748-752.
62.    Kivanç M and Ajgûl A. Antibacterial activity of esssential oils from Turkish species. Flavour Fragrance Journal.1986; 1(4-5): 175-179.
63.    Chalchat JC et al. Essential oils of rosemary (Rosmarinus officinalis L.). The chemical composition of oils from various (Morocco, Spain, France). Journal of Essential Oil Research.1993; 5(6): 613-618.
64.    Elamrani A et al. A study of Moroccan Rosemary oils. Journal of Essential Oil Research. 2000; 12(4): 487-495.
65.    Pintore G et al. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. from Sardinia and Corsica. Flavour Fragrance Journal. 2002; 17(1): 15-19.
66.    Serrano E et al. Evaluation of the essential oils of rosemary (Rosmarinus officinalis L.) from different zones of ‘Alentejo’ (Portugal). Journal of Essential Oil Research. 2002; 14(2): 87–92.
67.    Angioni A et al. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. Journal of Agricultural and Food Chemistry. 2004; 52(11): 3530–3535.
68.    Moghtader M and Afzali D. Study of the antibacterial properties of the essential oil of Rosemary. American-Eurasian Journal of Agricultural & Environmental Sciences, 2009; 5(3): 393-397.
69.    Jordan MM et al. Mineralogical Transformations of Kaolins from Cauquenes (Region of Maule, Chile) Journal of Geography and Geology. 2013; 5(4): 9-15.
70.    Ruberto G and Barrata MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry. 2000; 69(2):167-174.
71.    Hosni K et al. Enzyme-assisted extraction of essential oils from thyme (Thymus capitatus L.) and rosemary (Rosmarinus officinalis L.): impact on yield chemical composition and antimicrobial activity. Industrial Crops and Products. 2013; 47: 291–299.
72.    Nehir ES et al. Antioxidant and antimicrobial activities of essential oils extracted from Laurus nobilis L. leaves by using solvent-free microwave and hydrodistillation. Food and Nutrition Sciences.  2014; 5(2): 41960-10.
73.    Moghtader M and Farahmand A. Evaluation of the antibacterial effects of essential oil from the leaves of Laurus nobilis L. in Kerman Province. Journal of Microbiology and Antimicrobials. 2013; 5(2):13-17.
74.    Ramos C et al. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research. 2012; 26(6): 518-529.
75.    Deans SG and Ritchie G. Antibacterial properties of plant essential oils. International Journal of Food Microbiology. 1987; 5(2):165-180.
76.    Senatore F et al. Composition and antimicrobial activity of the essential oil of Achillea falcata L. (Asteraceae). Flavour and Fragrance Journal. 2004; 20(3): 291-294.
77.    Sartoratotto A et al. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian Journal Microbiology. 2004; 35(4): 275-280.
78.    Koutsoudaki C, Krsek M, Rodger A. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var chia. Journal of Agriculture and Food Chemistry. 2005; 53(20): 7681-5.
79.    Sokovic M and Griensven LJLDV. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology. 2006; 116(3): 211-224.
80.    Malecky M. Métabolisme des terpénoides chez les caprins, l’Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech) thèse. 2007; PP. 250.
81.    Marzouk B et al. Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L. Journal of food, agriculture & environment. 2008; 6(1): 78-82.
82.    Miladi H et al. Chemical Composition and Cytotoxic and Antioxidant Activities of Satureja montana L. Essential Oil and Its Antibacterial Potential against Salmonella Spp. Strains. J Journal of Chemistry. 2013; 3-9.
83.    Wang W et al. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules.  2012; 17(3): 2704–2713.
84.    AL-Saghir MG. Antibaterial assay of Cinnamomum cassia (Nees andTh.Nees) NessexBlumeBarkandThymusvulgarisL.leafextracts against five pathogens. Journal of Biological Sciences. 2009; 9(3): 280 –282.
85.    Santos SCRVL, Guine RPF, Barros A. Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of Rocha variety (Pyrus communis L.). Journal of Food Measurement and Characterization. 2015; 8(2):105-112.
86.    Muñiz-Márquez DB  et al. Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L., CyTA – Journal of Food. 2014; 12(3): 271-276.
87.    Oyaizu M. Studies on Products of Browning Reaction—Antioxidative Activities of Products of Browning Reaction. Prepared from Glucosamine, The Japanese Journal of Nutrition and Dietetics. 1986; 44(6): 307-315.
88.    Riachi LG and De Maria, CAB. Peppermint antioxidants revisited. Food Chemistry. 2015; 179: 72-81.
89.    Boulila A et al. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Industrial Crops and Products. 2015; 74: 485-493.  
90.    Horvathova E et al. Assessment of antioxidative, chelating, and DNA-potective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol and eucalyptol) of plants and intact Rosmarinus officinalis oil.Journal of Agricultural and Food Chemistry. 2014; 62(28): 6632-6639.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available