Author(s): Chitneni Vyshuk Rao, Manimaran V, Damodharan N

Email(s): manimaranrx1978@gmail.com

DOI: 10.5958/0974-360X.2020.00701.5   

Address: Chitneni Vyshuk Rao, Manimaran V, Damodharan N
Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603203.
*Corresponding Author

Published In:   Volume - 13,      Issue - 8,     Year - 2020


ABSTRACT:
Conventional drug delivery is replaced by targeted drug delivery to reduce toxicity, dose, to improve therapeutic efficiency and to provide better treatment for the patient. Nanotechnology has taken targeted drug delivery forward in recent years. Gold nanoparticles [GNPs] are one of the nano particles which are capable of treating different cancers with low toxic effects and high bioavailability. Shapes of gold nano particles plays an important role in toxicity level and differs from each other. Methods of preparing depends on the required shape of GNPs which includes in the production of nano rods, spheres, clusters, shells etc. One of the main method of GNPs synthesis is done by using sodium tetrachloroaurate (III) dihydrate and other methods include template method.. The property of easily penetrating into tumour cells has gained importance for GNPs. GNPs has wide range of applications in biomedical field which include detection of tumour, where GNPs mimic the natural pathway of macromolecules by using electrostatic forces, imaging by using transmission electronic microscopy and as bio labels.


Cite this article:
Chitneni Vyshuk Rao, Manimaran V, Damodharan N. Review on Methods, Applications and Role of gold nano particles in Cancer Therapy. Research J. Pharm. and Tech. 2020; 13(8):3963-3968. doi: 10.5958/0974-360X.2020.00701.5

Cite(Electronic):
Chitneni Vyshuk Rao, Manimaran V, Damodharan N. Review on Methods, Applications and Role of gold nano particles in Cancer Therapy. Research J. Pharm. and Tech. 2020; 13(8):3963-3968. doi: 10.5958/0974-360X.2020.00701.5   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-8-74


REFERENCES:
1.    Ross JS, Schenkein DP, Pietrusko R, et al. Targeted therapies for cancer 2004. Am J Clin Pathol 2004; 122:598^609.
2.    N K Jain, Vallabh Prakashan. Introduction to novel drug delivery systems.2016,16-34.
3.    Hitesh Jain, Rushi Panchal, Dilrose Pabla. Magnetic Nanoparticles: As a Drug Targeting Carrier, Research J. Pharm. and Tech.2011:1040-1045.
4.    S P Vyas, RK Khar, Targeted and controlled drug delivery: Novel carrier systems. International Journal of Pharmaceutics 2002, 40-64.
5.    Ch. Prabhakar, K. Bala Krishna. A Review on Polymeric Nanoparticles. Research J. Pharm. and Tech.  2011; 496-498.
6.    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41: 189^207.
7.    Svapnil Sanghavi, Misam Polara 1, Dipil Patel. Nanoparticle Drug Delivery to Brain, A Review. Research J. Pharm. and Tech 2012: 8-13
8.    Rajni Bala, Reecha Madaan, Vibhu, Sandeep. Green Synthesis and Characterization of silver nanoparticles using Kinnow mandarian peels extract and its application in Shampoo Formulation.. Research J. Pharm. and Tech 2017: 2461-2466.
9.    G.O. Birajdar, V.S. Kadam, A.G. Chintale, P.D. Halle, M.K. Nabde, K.S. Maske. A Comprehensive Review on Nanotechnology. Research J. Pharm. and Tech 2013: 486-495.
10.    Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2:750^63
11.    Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 2000;85: 217^29.
12.    Sachin J., N. Vishal Gupta. Solid Lipid Nanoparticles – Preparation, Applications, Characterization, Uses in Various Cancer Therapies: A Review., Research J. Pharm. and Tech 2013: 825-837.
13.    Dinesh Kumar V., Priya Ranjan Prasad Verma. Development of a poly (ε Caprolactone) based nanoparticles for oral delivery of Quercetin.  Research J. Pharm. and Tech 2015: 836-840.
14.    S. Krishnakumar, A. Ancy Judi, G. Keerthana, N.R. Kanchana Devi, R. Divya. Starch mediated production of silver nanoparticles (Ag-NPs) and their antimicrobial activity against selected pathogens. Research J. Pharm. and Tech 2016: 440-444.
15.    Akhter, S.; Ahmad, I.; Ahmad, M.Z.; Ramazani, F.; Singh, A.; Rahman, Z.; Kok, R.J. Nanomedicines as cancer therapeutics: Current status. Curr. Cancer Drug Targets 2013, 13, 362–378.
16.    Verissimo, T.V.; Santos, N.T.; Silva, J.R.; Azevedo, R.B.; Gomes, A.J.; Lunardi, C.N. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater. Sci. Eng. C 2016, 65, 199–204.
17.    Smith RC, Riollano M, Leung A, Hammond PT. Layer-by-layer platform technology for small-molecule delivery. Angew Chem Int Ed. 2009; 48:8974–8977.
18.    Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014;383(9916):549–557.
19.    Wang S, Deng H, Huang P, et al. Real-time self-tracking of an anticancer small molecule nanodrug based on colorful fluorescence variations. RSC Advances. 2016;6(15):12472–12478.
20.    Kim D, Jon S. Gold nanoparticles in image-guided cancer therapy. Inorgan Chim Acta 2012; 393: 154-164.
21.    Khlebtsov NG, Dykman LA. Optical properties and biomedical applications of plasmonic nanoparticles. J Quantitat Spectroscop Radiat Transf 2010; 111: 1-35.
22.    Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicol 2010; 100: 178-186.
23.    Mendoza KC, McLane VD, Kim S, Griffin JD. Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording. Brain Res 2010; 1325: 19-27.
24.    Hartono D, Hody, Yang KL, Yung LY. The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes. Biomater 2010; 31: 3008-3015.
25.    Lukianova-Hleb EY, Wagner DS, Brenner MK, Lapotko DO. Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles. Biomater 2012; 33: 5441-5450.
26.    B.S. Naveen Prasad, TVN. Padmesh. Common Duckweed (Lemna minor) Assisted Green Synthesis of Silver Nanoparticles as Potent Anti-Fungal Nanomaterial., Research J. Pharm. and Tech. 2014: 955-958.
27.    27.Sankaradoss Nirmala, Velayutham Ravichandiran, A Vijayalakshmi1, P. Nadanasabapathi. Protective effect of Gymnemic acid isolated from Gymnema sylvestre leaves coated Chitosan reduced gold nanoparticles in hyperlipedimia and Diabetes Induced vascular tissue damage in Rats., Research J. Pharm. and Tech 2018: 1193-1206.
28.    Etame AB, Smith CA, Chan WC, Rutka JT. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomed: Nanotechnol Biol Med 2011; 7: 992-1000.
29.    Rezende TS, Andrade GRS, Barreto LS, Costa Jr NB, Gimenez IF, Almeida LE. Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan. Mater Lett 2010; 64: 882-884.
30.    Chen K-S, Hung T-S, Wu H-M, Wu J-Y, Lin M-T, Feng CK. Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization. Thin Solid Films 2010; 518: 75577562.
31.    El-Ansary, A.; Al-Daihan, S. On the toxicity of therapeutically used nanoparticles: An overview. J. Toxicol. 2009, 2009, 754810:1–754810:9.
32.    Jamie M. Bergen,a Horst A. von Recum, a,b Thomas T. Goodman, Archna P. Massey, Suzie. Gold Nanoparticles as a Versatile Platform for Optimizing Physicochemical Parameters for Targeted Drug Delivery. Macromolecular Bioscience2003:506-516.
33.    Sarah D. Brown, Paola Nativo. Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin.J. AM. CHEM. SOC. 2010, 132, 4678–4684.
34.    Wheate, N. J.; Taleb, R. I.; Krause-Heuer, A. M.; Cook, R. L.; Wang, S.; Higgins, V. J.; Aldrich-Wright, J. R. Dalton Trans. 2007, 5055.
35.    Xiong Liu, Mark Atwater. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and surfaces:2007, 1-3.
36.    Fen-Ying Kong, Jin-Wei Zhang, Rong-Fang Li. Unique Roles of Gold Nanoparticles 22(9), 1445in Drug Delivery, Targeting and Imaging Applications. Molecular Diversity Preservation International and Multidisciplinary Digital Publishing Institute.2007: 22(9), 1445.
37.    Weibo Cai, Ting Gao. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology and applications.2008: 17-32.
38.    Wang G, S Tender A S, Sun W, Fang N.  2010.  Optical imaging of non-fluorescent nanoparticle probes in live cells.  A nalyst.  1 35: 2 15– 2 21.   
39.    39. Neely   A, Perry   C,  Varisli   B ,  Singh   AK ,  Arbneshi   T ,  Senapati   D  .  2009.  Ultrasensitive and highly selective detection of Alzheimer’ s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle.   ACS Nano.   3: 2834 – 2840.   
40.    amnev  A A,  D ykman  L A,  T arantilis  P A,  P olissiou  M G.   2 002.   Spectroimmunochemistry using colloidal gold bioconjugates  .Biosci Rep.   22 : 541 – 547 .  
41.    Russier-Antoine   I, Huang   J,  Benichou   E ,  Bachelier   G ,  Jonin   C , B revet  P F. 2008 Hyper Rayleigh scattering of protein-mediated gold nanoparticles aggregates  .  C hem Phys Lett.  4 50: 3 45– 3 49.   
42.    Neely   A,  Perry   C ,  Varisli   B ,  Singh   AK ,  Arbneshi   T,  Senapati   D .  2009.  Ultrasensitive and highly selective detection of Alzheimer’ s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle.   ACS Nano.   3: 2834 – 2840 .   
43.    Dykman   LA,  Khlebtsov   NG  .  2011.  Gold nanoparticles in biology and medicine: recent advances and prospects.  A cta Naturae.   3: 34 – 55.  
44.    Neely   A, Perry   C,  Varisli   B ,  Singh   AK ,  Arbneshi   T Senapati   D . 2009.  Ultrasensitive and highly selective detection of Alzheimer ’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano.   3: 2834 – 2840.
45.    Zharov  V P,  Galitovsky  V ,  Viegas  M .   2 003.  Photothermal detection of local thermal effects during selective nanophotothermolysis .   Appl Phys Lett.  8 3: 4 897– 4 899.     
46.    Huang   X,  Neretina   S ,  El ‐S ayed  M A.   2 009.  G old nanorods: from synthesis and properties to biological and biomedical applications.   Adv Mater.   21 : 4880 – 4910 .  
47.    Doubrovsky   VA,  Yanina   IY ,  Tuchin   VV  .  2010.  Inhomogeneity of photo-induced fat cell lipolysis. In:   Tuchin   VV,  Genina   EA , Eds.   Sartov Fall Meeting  S ep 1, 2010.  L ocation: United Kingdom.  International Society for Optics and Photonics.   
48.    Kbarzadeh  A ,  Mikaeili  H ,  Asgari  D ,  Zarghami  N ,  Mohammad  R ,  Davaran  S. 2012.  Preparation and in-vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers  Int J Nanomedicine. 7: 5 11– 5 26.   
49.    Kumar S, Harrison N, Richards-Kortum R, Sokolov K.  Plasmonic nanosensors for imaging intracellular biomarkers in live cells.  Nano Lett 2007; 7: 1338–43.
50.    Sperling R, Rivera Gil P, Zhang F, Zanella M, Parak W.  Biological applications of gold nanoparticles.  Chem Soc Rev 2008; 37: 1896– 908.
51.    Roth J.  The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry.  Histochem Cell Biol 1996; 106: 1–8.  
52.    Lee S, Chon H, Lee M, Choo J, Shin S, Lee Y, et al.  Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres.  Biosens Bioelectron 2009; 24: 2260–3.
53.    Kneipp J, Kneipp H, Wittig B, Kneipp K.  Novel optical nanosensors for probing and imaging live cells.  Nanomedicine 2010; 6: 214–26.
54.    Kneipp J, Kneipp H, Wittig B, Kneipp K.  Novel optical nanosensors for probing and imaging live cells.  Nanomedicine 2010; 6: 214–26.
55.    Li J, Zou L, Hartono D, Ong C, Bay B, Yung L.  Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro.  Adv Mater 2008; 20: 138–42.
56.    Qian X, Peng X, Ansari D, Yin-Goen Q, Chen G, Shin D, et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags.  Nat Biotechnol 2008; 26: 83–90.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available