REFERENCES:
1. Feynman Richard P. There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics [Internet]. 2012 [cited 2019 Apr 23]. Available from: https://www.researchgate.net/ publication/291938281_There’s_Plenty_of_Room_at_the_Bottom_An_Invitation_to_Enter_a_New_Field_of_Physics
2. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther [Internet]. 2008 May 24 [cited 2019 Jul 9];83(5):761–9. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/17957183
3. Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther [Internet]. 2003 Jul 3 [cited 2019 Jul 1];3(4):655–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 12831370
4. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-Challenge and Perspectives. Angew Chemie Int Ed [Internet]. 2009 Jan 19 [cited 2019 Jul 1];48(5):872–97. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/19142939
5. Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol [Internet]. 2006 Oct [cited 2019 Jul 1];24(10):1211–7. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/17033654
6. Pathak K, Raghuvanshi S. Oral Bioavailability: Issues and Solutions via Nanoformulations. Clin Pharmacokinet [Internet]. 2015 Apr 11 [cited 2019 Jul 1];54(4):325–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25666353
7. Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother [Internet]. 2018 Jan 1 [cited 2019 Apr 23];97:1521–37. Available from: https://www.sciencedirect.com/ science/article/abs/pii/S0753332217343925
8. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm [Internet]. 2003 Sep [cited 2019 Jul 1];56(2):189–96. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/12957632
9. Sanad RA, AbdelMalak NS, elBayoomy TS, Badawi AA. Formulation of a Novel Oxybenzone-Loaded Nanostructured Lipid Carriers (NLCs). AAPS PharmSciTech [Internet]. 2010 Dec 24 [cited 2019 Jul 8];11(4):1684–94. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/21107771
10. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech [Internet]. 2015 Apr [cited 2019 Jul 9];5(2):123–7. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/28324579
11. Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today [Internet]. 2011 May [cited 2019 Jul 9];16(9–10):457–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644611000766
12. S S, S A, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system--review. J Pharm Pharm Sci [Internet]. 2012 [cited 2019 Jul 1];15(1):103–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22365092
13. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem [Internet]. 2012 [cited 2019 Jul 1]; 8:2091–9. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/23243470
14. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv [Internet]. 2010 Aug 30 [cited 2019 Apr 24];17(6):419–25. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/20429848
15. Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem [Internet]. 2007 Mar 28 [cited 2019 Apr 24];57(1):89–94. Available from: http://link.springer.com/ 10.1007/s10847-006-9216-9
16. Li D, Ma M. Nanosponges for water purification. Clean Prod Process [Internet]. 2000 Sep 22 [cited 2019 Jul 1];2(2):112–6. Available from: http://link.springer.com/10.1007/s100980000061
17. Savage N, Diallo MS. Nanomaterials and Water Purification: Opportunities and Challenges. J Nanoparticle Res [Internet]. 2005 Oct [cited 2019 Jul 1];7(4–5):331–42. Available from: http://link.springer.com/10.1007/s11051-005-7523-5
18. Leudjo Taka A, Pillay K, Yangkou Mbianda X. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydr Polym. 2017;159(December):94–107.
19. Boscolo B, Trotta F, Ghibaudi E. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J Mol Catal B Enzym [Internet]. 2010 Feb 1 [cited 2019 Jul 1];62(2):155–61. Available from: https://www.sciencedirect.com/science/article/pii/S1381117709002550
20. Hu CJ, Fang RH, Copp J, Luk BT, Zhang L, Diego S, et al. HHS Public Access. 2013;8(5):336–40.
21. Michael Arkas, Dimitris Tsiourvas and, Paleos* CM. Functional Dendrimeric “Nanosponges” for the Removal of Polycyclic Aromatic Hydrocarbons from Water. Chem Mater [Internet]. 2003 [cited 2019 Apr 24];15(14):2844–7. Available from: https://pubs.acs.org/doi/abs/10.1021/cm030214q
22. Trotta F, Cavalli R, Martina K, Biasizzo M, Vitillo J, Bordiga S, et al. Cyclodextrin nanosponges as effective gas carriers. J Incl Phenom Macrocycl Chem. 2011;71(1–2):189–94.
23. Osmani Riyaz Ali M., Thirumaleshwar Shailesh, Bhosale Rohit R, Kulkarni Parthasarathi K. Nanosponges: The spanking accession in drug delivery-An updated comprehensive review. Der Pharm Sin [Internet]. 2014 [cited 2019 Apr 24];5(6):7–21. Available from: www.pelagiaresearchlibrary.com
24. Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based Nanosponges for Drug Delivery. J Incl Phenom Macrocycl Chem [Internet]. 2006 Oct 10 [cited 2019 Jul 1];56(1–2):209–13. Available from: http://link.springer.com/10.1007/s10847-006-9085-2
25. Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology [Internet]. 2016 Jul [cited 2019 Apr 24];8(4):579–601. Available from: http://doi.wiley.com/10.1002/ wnan.1384
26. Patel EK, Oswal RJ. Nanosponge And Micro Sponges: A Novel Drug Delivery System. Int J Res Pharm Chem [Internet]. 2012 [cited 2019 Jul 9];2(2):237–44. Available from: www.ijrpc.com
27. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem [Internet]. 2008 Oct 23 [cited 2019 Jul 1];62(1–2):23–42. Available from: http://link.springer.com/10.1007/s10847-008-9456-y
28. Swaminathan S, Vavia PR, Trotta F, Cavalli R, Tumbiolo S, Bertinetti L, et al. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem [Internet]. 2013 Jun 13 [cited 2019 Jul 1];76(1–2):201–11. Available from: http://link.springer.com/10.1007/s10847-012-0192-y
29. Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: a potential nanocarrier for novel drug delivery-a review. Asian Pacific J Trop Dis [Internet]. 2014 Sep 1 [cited 2019 Jul 9];4(2): S519–26. Available from: https:// www.sciencedirect.com/science/article/pii/S2222180814606678
30. Guo L, Gao G, Liu X, Liu F. Preparation and characterization of TiO2 nanosponge. Mater Chem Phys [Internet]. 2008 Oct 15 [cited 2019 Apr 23];111(2–3):322–5. Available from: https:// www.sciencedirect.com/science/article/pii/S0254058408002149
31. Yapa AS, Wang H, Wendel SO, Shrestha TB, Kariyawasam NL, Kalubowilage M, et al. Peptide nanosponges designed for rapid uptake by leukocytes and neural stem cells. RSC Adv [Internet]. 2018 Apr 27 [cited 2019 Apr 23];8(29):16052–60. Available from: http://xlink.rsc.org/?DOI=C8RA00717A
32. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013;63(3):335–58.
33. Wang F, Gao W, Thamphiwatana S, Luk BT, Angsantikul P, Zhang Q, et al. Hydrogel Retaining Toxin-Absorbing Nanosponges for Local Treatment of Methicillin-Resistant Staphylococcus aureus Infection. Adv Mater [Internet]. 2015 Jun [cited 2019 Jul 14];27(22):3437–43. Available from: http://doi.wiley.com/10.1002/adma.201501071
34. Osmani Riyaz Ali M., Thirumaleshwar Shailesh, Bhosale Rohit, Kulkarni Parthasarathi. Nanosponges: The spanking accession in drug delivery-An updated comprehensive review. Der Pharm Sin [Internet]. 2010 [cited 2019 Apr 24];5(6):7–21. Available from: https://www.researchgate.net/publication/269109154_Nanosponges_The_spanking_accession_in_drug_delivery-An_updated_comprehensive_review
35. Waghmare SG, Nikhade RR, Kosalge SB. Nanosponges: Novel Approach for Controlled Release Drug Delivery System. Int J Pharm Pharm Res [Internet]. 2017 [cited 2019 Apr 24];9(3):101–16. Available from: www.ijppr.humanjournals.com
36. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm [Internet]. 2013 Sep 1 [cited 2019 Apr 24];63(3):335–58. Available from: http://content.sciendo.com/view/journals/acph/ 63/3/article-p335.xml
37. Panda S, Vijayalakshmi S, Pattnaik S, Swain RP. Nanosponges: A Novel Carrier for Targeted Drug Delivery. Int J PharmTech Res [Internet]. 2015 [cited 2019 Jul 1];8(7):213–24. Available from: http://sphinxsai.com/2015/ph_vol8_no7/2/(213-224)V8N7.pdf
38. Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym [Internet]. 2017 Oct 1 [cited 2019 Jul 1]; 173:37–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28732878
39. Ahmed RZ, Patil G, Zaheer Z. Nanosponges – a completely new nano-horizon: pharmaceutical applications and recent advances. Drug Dev Ind Pharm [Internet]. 2013 Sep 11 [cited 2019 Jul 1];39(9):1263–72. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/22681585
40. Lu A-H, Salabas EL, Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew Chemie Int Ed [Internet]. 2007 Feb 12 [cited 2019 Jul 8];46(8):1222–44. Available from: http://doi.wiley.com/ 10.1002/anie.200602866
41. Bolmal UB, Manvi F V, Rajkumar K, Sowjanya Palla S, Paladugu A, Reddy KR. Recent Advances in Nanosponges as Drug Delivery System. Int J Pharm Sci Nanotechnol [Internet]. 2013 [cited 2019 Apr 24];6(1):1934–44. Available from: http:// www.ijpsnonline.com/Issues/1934_full.pdf
42. Alongi J, Poskovic M, Frache A, Trotta F. Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr Polym [Internet]. 2011 Aug 1 [cited 2019 Apr 24];86(1):127–35. Available from: https://www.sciencedirect.com/science/article/pii/ S0144861711002761
43. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17(6):419–25.
44. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193–201.
45. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharm Dev Technol [Internet]. 2013 Jun 12 [cited 2019 Apr 24];18(3):619–25. Available from: http:// www.tandfonline.com/ doi/full/ 10.3109/10837450.2011.649855
46. Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS Pharm Sci Tech [Internet]. 2011 Mar [cited 2019 Apr 24];12(1):279–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21240574
47. Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol [Internet]. 2013 Jun [cited 2019 Apr 24];9(6):998–1007. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23858964
48. Pavani A, Rama B. Formulation and in Vitro characterization of flurbiprofen nanosponges. Int J Res Pharm Chem [Internet]. 2018 [cited 2019 Apr 24];8(4):577–82. Available from: www.ijrpc.com
49. Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J Drug Deliv Sci Technol [Internet]. 2017 Oct [cited 2019 Apr 24]; 41: 344–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224717303994
50. Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm [Internet]. 2013 Feb 25 [cited 2019 Apr 24];443(1–2):262–72. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/ 23279938
51. Jilsha G., Viswanad V. Nanosponges: A novel approach of drug delivery system | G. Jilsha. International J Pharm Sci Rev Res [Internet]. 2013 [cited 2019 Jul 14];19(2):119–23. Available from: https://www.researchgate.net/publication/281655795_Nanosponges_A_novel_approach_of_drug_delivery_system
52. Singireddy A, Pedireddi SR, Subramanian S. Optimization of reaction parameters for synthesis of Cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res [Internet]. 2019 Apr 19 [cited 2019 Jul 14];26(4):93. Available from: http://link.springer.com/10.1007/s10965-019-1754-0
53. Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol [Internet]. 2011 Aug 31 [cited 2019 Jul 9];16(4):367–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20367024
54. Subhash PB, Mohite SK. Formulation Design and Development of Artesunate Nanosponge. Eur J Pharm Mdical Res [Internet]. 2016 [cited 2019 Jul 1];3(5):206–11. Available from: www.ejpmr.com
55. Anuradha S, Seemadevi K, Magar S, Dangare K. Nanosponges : a Modern Formulation Approach in Drug. World J Pharm Pharm Sci. 2018;7(2):575–92.
56. M. KPD. Atorvastatin Loaded Nanosponges –A Novel Strategic Approach for Enhanced Bioavialability. World J Pharm Pharm Sci [Internet]. 2017 Aug 1 [cited 2019 Jul 9];1223–36. Available from: http://wjpps.com/wjpps_controller/abstract_id/7541
57. Abbas N, Parveen K, Hussain A, Latif S, Uz Zaman S, Shah PA, et al. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop J Pharm Res [Internet]. 2019 Mar 11 [cited 2019 Jul 14];18(2):215. Available from: https:// www.ajol.info/index.php/tjpr/article/view/184490
58. Srinivas P, K S. Formulation and Evaluation of Voriconazole Loaded Nanosponges for Oral and Topical Delivery. Int J Drug Dev Res [Internet]. 2009 [cited 2019 Apr 24];5(1):55–69. Available from: http://www.ijddr.in/drug-development/ formulation-and-evaluation-of-voriconazole-loaded-nanospongesfor-oral-and-topical-delivery.php?aid=5046
59. Jilsha G. and Viswanad Vidya. Nanosponge Loaded Hydrogel Of Cephalexin For Topical Delivery. Int J Pharm Sci Res [Internet]. 2015 [cited 2019 Aug 16];4(13100):7–13. Available from: http://ijpsr.com/bft-article/nanosponge-loaded-hydrogel-of-cephalexin-for-topical-delivery/?view=fulltext
60. PENJURI Subhash Chandra Bose, Damineni Saritha RN, BNS Sailakshmi. Formulation and Evaluation of Lansoprazole Loaded Nanosponges Subhash Chandra Bose PENJURI | Request PDF. Turkish J Pharm Sci [Internet]. 2016 [cited 2019 Aug 16];13(3):304–10. Available from: https://www.researchgate.net/ publication/316512569_Formulation_and_Evaluation_of_Lansoprazole_Loaded_Nanosponges
61. Badr-Eldin SM, Aldawsari H, Labib G, El-Kamel A. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in and amp;nbsp;vivo and amp;nbsp;evaluation. Int J Nanomedicine [Internet]. 2015 Jan [cited 2019 Aug 16]; 10:893–902. Available from: http://www.dovepress.com/design-and-formulation-of-a-topical-hydrogel-integrating-lemongrass-lo-peer-reviewed-article-IJN
62. Srinivas P, Jahnavi Reddy A. Formulation and Evaluation of Isoniazid Loaded Nanosponges for Topical Delivery. Pharm Nanotechnol [Internet]. 2015 [cited 2019 Aug 16];3(1):68–76. Available from: https:// www.ingentaconnect.com/ content/ben/ pnt/2015/00000003/00000001/art00010
63. Shoaib Q, Abbas N, Irfan M, Hussain A, Sohail Arshad M, Zajif Hussain S, et al. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen licensed under the Creative Commons Attribution 4.0 International License. Trop J Pharm Res August [Internet]. 2018 [cited 2019 Apr 24];17(8):1465–74. Available from: http://www.tjpr.org
64. Sri KV, Santhoshini G, Sankar DR, Niharika K. Formulation and Evaluation of Rutin Loaded Nanosponges. Asian J Res Pharm Sci [Internet]. 2018 Mar 21 [cited 2019 Aug 16];8(1):21–4. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ajrpsandvolume=8andissue=1andarticle=005
65. Lala Rita, Thorat Amit, Gargote Chandrashekhar S. Current trends in β-cyclodextrin based drug delivery systems. Int J Res ayurveda Pharm [Internet]. 2010 [cited 2019 Apr 24];2(5):1520–6. Available from: https://www.researchgate.net/publication/ 284817884_Current_trends_in_b-cyclodextrin_based_drug_delivery_systems
66. Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R. Paclitaxel loaded nanosponges: in-vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv [Internet]. 2011 Mar [cited 2019 Jul 9];8(2):194–202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21235471
67. Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem [Internet]. 2013 Apr 14 [cited 2019 Aug 16];75(3–4):315–22. Available from: http://link.springer.com/ 10.1007/ s10847-012-0186-9
68. Kumar S, Pooja, Trotta F, Rao R. Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies. Pharmaceutics [Internet]. 2018 Sep 26 [cited 2019 Aug 16];10(4):169. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/30261580
69. Shastrulagari S. Shivani and Poladi Kranthi Kumar. Nanosponges-Novel Emerging Drug Delivery System : A Review. Int J Pharm Sci Res [Internet]. 2015 [cited 2019 Aug 16];6(2):529. Available from: https://www.semanticscholar.org/paper/Nanosponges-NoveL-Emerging-Drug-Delivery-System-%3A-A-Shivani-Poladi/30162069fd26c268df303083c3f0221c29f52356
70. Rao MRP, Shirsath C. Enhancement of Bioavailability of Non-nucleoside Reverse Transciptase Inhibitor Using Nanosponges. AAPS PharmSciTech [Internet]. 2017 Jul 18 [cited 2019 Jul 9];18(5):1728–38. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/27757921
71. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem [Internet]. 2013 Dec 23 [cited 2019 Jul 9];77(1–4):135–45. Available from: http://link.springer.com/10.1007/s10847-012-0224-7
72. Shende P, Deshmukh K, Trotta F, Caldera F. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int J Pharm. 2013;456(1):95–100.
73. Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem [Internet]. 2010 Oct 25 [cited 2019 Jul 9];68(1–2):183–91. Available from: http://link.springer.com/10.1007/s10847-010-9765-9
74. Yadav GV, Panchory HP. “Nanosponges – a Boon To the Targeted Drug Delivery System.” J Drug Deliv Ther. 2016;3(4):151–5.
75. Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F, et al. GSH-targeted nanosponges increase doxorubicin-induced toxicity “in vitro” and “in vivo” in cancer cells with high antioxidant defenses. Free Radic Biol Med [Internet]. 2016 Aug [cited 2019 Aug 16]; 97:24–37. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/27184956
76. Lambert WS, Carlson BJ, van der Ende AE, Shih G, Dobish JN, Calkins DJ, et al. Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Transl Vis Sci Technol [Internet]. 2015 Jan [cited 2019 Apr 24];4(1):1. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/ 25599009
77. Method for preparing dextrin nanosponges [Internet]. WO2012147069A1, 2012 [cited 2019 Apr 24]. Available from: https://patents.google.com/patent/WO2012147069A1/en
78. Farrell Declan, Limaye Santosh, Subramanian Shanthi. Silicon Nanosponge Particles [Internet]. US20060251561A1, 2006 [cited 2019 Apr 24]. Available from: https://patents.google.com/patent/ US20060251561A1/ en
79. Muthusamy Eswaramoorthy, Katla Saikrishana. A template free and polymer free metal nanosponge and a process thereof [Internet]. WO2009138998A2, 2009 [cited 2019 Apr 24]. Available from: https://patents.google.com/ patent/ WO2009138998A2/ en
80. Nanoparticles, Nanosponges, Methods of Synthesis, and Methods of Use [Internet]. US20140370422A1, 2014 [cited 2019 Apr 24]. Available from: https://patents.google.com/patent/ US20140370422A1/en
81. Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Roggero C VR. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges [Internet]. WO2006002814A1, 2005 [cited 2019 Jul 26]. Available from: https:// patents.google.com/ patent/ WO2006002814A1/ en?oq=nanosponges+formulation
82. Trotta F, Tumiatti V, Cavalli R, Rogero C, Mognetti B BG. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs [Internet]. EP2175847A1, 2008 [cited 2019 Jul 26]. Available from: https://patents.google.com/patent/EP2175847A1/ en?oq=nanosponges+formulation
83. Paolo F, Elisabetta R, Cavalli R TF. Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies [Internet]. EP2294190A1, 2009 [cited 2019 Jul 26]. Available from: https://patents.google.com/patent/EP2294190A1/en?oq=nanosponges
84. Roggero CM, Dicarlo S, Tumiatti V, Tumiatti M, Devecchi M, Scariot V KS. Use of functionalised nanosponges for the growth, conservation, protection and disinfection of vegetable organisms [Internet]. WO2013046165A1, 2013 [cited 2019 Jul 26]. Available from: https://patents.google.com/patent/WO2013046165A1/ en?oq=nanosponges