Author(s): Pavithra Pradeep Prabhu, Chetan Hasmukh Mehta, Usha Y Nayak

Email(s): usha.nayak@manipal.edu

DOI: 10.5958/0974-360X.2020.00626.5   

Address: Pavithra Pradeep Prabhu, Chetan Hasmukh Mehta, Usha Y Nayak*
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India – 576104.
*Corresponding Author

Published In:   Volume - 13,      Issue - 7,     Year - 2020


ABSTRACT:
Background: Nanotechnology-based drug delivery system is gaining tremendous importance in present era due to its potential to tackle a wide range of untouched challenges. One of the various nanoformulations formulated is nanosponges. Researchers have claimed these nanoformulations to be effective in the delivery of drugs having low water solubility. Enhancing water solubility has many advantages for particularly those drugs with a narrow therapeutic window. Also, these are even said to be effective in achieving targeted delivery, controlled delivery. Delivery of biologicals is likely to be made easy with this technology. Many non-pharmaceutical applications too were studied by scientists. Objective: To understand the term ‘Nanosponge’, study its preparation, advantages, and applications. Methods: A comprehensive study by the electronic search was undertaken to understand the term ‘Nanosponges’, its ways of preparation and itsbroader application in the pharmaceutical field.An effort was made to comprehend recent advancements and patents in the domainfrom the available resources. Results: Various efforts have been put to formulate an ideal drug delivery system, nanosponge being one among them has been studied by researchers to show promising results. Conclusion: One among the reasons for the failure of majority of drug therapy is ineffective formulation. Nanosponges have been formulated and studied to solve one such problem. Advantages dominate the countable number of drawbacks associated with this formulation.The molecular weight of the substance to be incorporated into the formulation is a critical parameter. However, this challenge is likely to be overcome by future researches.


Cite this article:
Pavithra Pradeep Prabhu, Chetan Hasmukh Mehta, Usha Y Nayak. Nanosponges-Revolutionary Approach: A Review. Research J. Pharm. and Tech. 2020; 13(7): 3536-3544. doi: 10.5958/0974-360X.2020.00626.5

Cite(Electronic):
Pavithra Pradeep Prabhu, Chetan Hasmukh Mehta, Usha Y Nayak. Nanosponges-Revolutionary Approach: A Review. Research J. Pharm. and Tech. 2020; 13(7): 3536-3544. doi: 10.5958/0974-360X.2020.00626.5   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-7-86


REFERENCES:
1. Feynman Richard P. There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics [Internet]. 2012 [cited 2019 Apr 23]. Available from: https://www.researchgate.net/ publication/291938281_There’s_Plenty_of_Room_at_the_Bottom_An_Invitation_to_Enter_a_New_Field_of_Physics
2. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther [Internet]. 2008 May 24 [cited 2019 Jul 9];83(5):761–9. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/17957183
3. Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther [Internet]. 2003 Jul 3 [cited 2019 Jul 1];3(4):655–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 12831370
4. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-Challenge and Perspectives. Angew Chemie Int Ed [Internet]. 2009 Jan 19 [cited 2019 Jul 1];48(5):872–97. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/19142939
5. Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol [Internet]. 2006 Oct [cited 2019 Jul 1];24(10):1211–7. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/17033654
6. Pathak K, Raghuvanshi S. Oral Bioavailability: Issues and Solutions via Nanoformulations. Clin Pharmacokinet [Internet]. 2015 Apr 11 [cited 2019 Jul 1];54(4):325–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25666353
7. Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother [Internet]. 2018 Jan 1 [cited 2019 Apr 23];97:1521–37. Available from: https://www.sciencedirect.com/ science/article/abs/pii/S0753332217343925
8. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm [Internet]. 2003 Sep [cited 2019 Jul 1];56(2):189–96. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/12957632
9. Sanad RA, AbdelMalak NS, elBayoomy TS, Badawi AA. Formulation of a Novel Oxybenzone-Loaded Nanostructured Lipid Carriers (NLCs). AAPS PharmSciTech [Internet]. 2010 Dec 24 [cited 2019 Jul 8];11(4):1684–94. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/21107771
10. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech [Internet]. 2015 Apr [cited 2019 Jul 9];5(2):123–7. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/28324579
11. Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today [Internet]. 2011 May [cited 2019 Jul 9];16(9–10):457–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644611000766
12. S S, S A, Krishnamoorthy K, Rajappan M. Nanosponges: a novel class of drug delivery system--review. J Pharm Pharm Sci [Internet]. 2012 [cited 2019 Jul 1];15(1):103–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22365092
13. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem [Internet]. 2012 [cited 2019 Jul 1]; 8:2091–9. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/23243470
14. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv [Internet]. 2010 Aug 30 [cited 2019 Apr 24];17(6):419–25. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/20429848
15. Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem [Internet]. 2007 Mar 28 [cited 2019 Apr 24];57(1):89–94. Available from: http://link.springer.com/ 10.1007/s10847-006-9216-9
16. Li D, Ma M. Nanosponges for water purification. Clean Prod Process [Internet]. 2000 Sep 22 [cited 2019 Jul 1];2(2):112–6. Available from: http://link.springer.com/10.1007/s100980000061
17. Savage N, Diallo MS. Nanomaterials and Water Purification: Opportunities and Challenges. J Nanoparticle Res [Internet]. 2005 Oct [cited 2019 Jul 1];7(4–5):331–42. Available from: http://link.springer.com/10.1007/s11051-005-7523-5
18. Leudjo Taka A, Pillay K, Yangkou Mbianda X. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydr Polym. 2017;159(December):94–107.
19. Boscolo B, Trotta F, Ghibaudi E. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J Mol Catal B Enzym [Internet]. 2010 Feb 1 [cited 2019 Jul 1];62(2):155–61. Available from: https://www.sciencedirect.com/science/article/pii/S1381117709002550
20. Hu CJ, Fang RH, Copp J, Luk BT, Zhang L, Diego S, et al. HHS Public Access. 2013;8(5):336–40.
21. Michael Arkas, Dimitris Tsiourvas and, Paleos* CM. Functional Dendrimeric “Nanosponges” for the Removal of Polycyclic Aromatic Hydrocarbons from Water. Chem Mater [Internet]. 2003 [cited 2019 Apr 24];15(14):2844–7. Available from: https://pubs.acs.org/doi/abs/10.1021/cm030214q
22. Trotta F, Cavalli R, Martina K, Biasizzo M, Vitillo J, Bordiga S, et al. Cyclodextrin nanosponges as effective gas carriers. J Incl Phenom Macrocycl Chem. 2011;71(1–2):189–94.
23. Osmani Riyaz Ali M., Thirumaleshwar Shailesh, Bhosale Rohit R, Kulkarni Parthasarathi K. Nanosponges: The spanking accession in drug delivery-An updated comprehensive review. Der Pharm Sin [Internet]. 2014 [cited 2019 Apr 24];5(6):7–21. Available from: www.pelagiaresearchlibrary.com
24. Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based Nanosponges for Drug Delivery. J Incl Phenom Macrocycl Chem [Internet]. 2006 Oct 10 [cited 2019 Jul 1];56(1–2):209–13. Available from: http://link.springer.com/10.1007/s10847-006-9085-2
25. Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology [Internet]. 2016 Jul [cited 2019 Apr 24];8(4):579–601. Available from: http://doi.wiley.com/10.1002/ wnan.1384
26. Patel EK, Oswal RJ. Nanosponge And Micro Sponges: A Novel Drug Delivery System. Int J Res Pharm Chem [Internet]. 2012 [cited 2019 Jul 9];2(2):237–44. Available from: www.ijrpc.com
27. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem [Internet]. 2008 Oct 23 [cited 2019 Jul 1];62(1–2):23–42. Available from: http://link.springer.com/10.1007/s10847-008-9456-y
28. Swaminathan S, Vavia PR, Trotta F, Cavalli R, Tumbiolo S, Bertinetti L, et al. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem [Internet]. 2013 Jun 13 [cited 2019 Jul 1];76(1–2):201–11. Available from: http://link.springer.com/10.1007/s10847-012-0192-y
29. Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: a potential nanocarrier for novel drug delivery-a review. Asian Pacific J Trop Dis [Internet]. 2014 Sep 1 [cited 2019 Jul 9];4(2): S519–26. Available from: https:// www.sciencedirect.com/science/article/pii/S2222180814606678
30. Guo L, Gao G, Liu X, Liu F. Preparation and characterization of TiO2 nanosponge. Mater Chem Phys [Internet]. 2008 Oct 15 [cited 2019 Apr 23];111(2–3):322–5. Available from: https:// www.sciencedirect.com/science/article/pii/S0254058408002149
31. Yapa AS, Wang H, Wendel SO, Shrestha TB, Kariyawasam NL, Kalubowilage M, et al. Peptide nanosponges designed for rapid uptake by leukocytes and neural stem cells. RSC Adv [Internet]. 2018 Apr 27 [cited 2019 Apr 23];8(29):16052–60. Available from: http://xlink.rsc.org/?DOI=C8RA00717A
32. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013;63(3):335–58.
33. Wang F, Gao W, Thamphiwatana S, Luk BT, Angsantikul P, Zhang Q, et al. Hydrogel Retaining Toxin-Absorbing Nanosponges for Local Treatment of Methicillin-Resistant Staphylococcus aureus Infection. Adv Mater [Internet]. 2015 Jun [cited 2019 Jul 14];27(22):3437–43. Available from: http://doi.wiley.com/10.1002/adma.201501071
34. Osmani Riyaz Ali M., Thirumaleshwar Shailesh, Bhosale Rohit, Kulkarni Parthasarathi. Nanosponges: The spanking accession in drug delivery-An updated comprehensive review. Der Pharm Sin [Internet]. 2010 [cited 2019 Apr 24];5(6):7–21. Available from: https://www.researchgate.net/publication/269109154_Nanosponges_The_spanking_accession_in_drug_delivery-An_updated_comprehensive_review
35. Waghmare SG, Nikhade RR, Kosalge SB. Nanosponges: Novel Approach for Controlled Release Drug Delivery System. Int J Pharm Pharm Res [Internet]. 2017 [cited 2019 Apr 24];9(3):101–16. Available from: www.ijppr.humanjournals.com
36. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm [Internet]. 2013 Sep 1 [cited 2019 Apr 24];63(3):335–58. Available from: http://content.sciendo.com/view/journals/acph/ 63/3/article-p335.xml
37. Panda S, Vijayalakshmi S, Pattnaik S, Swain RP. Nanosponges: A Novel Carrier for Targeted Drug Delivery. Int J PharmTech Res [Internet]. 2015 [cited 2019 Jul 1];8(7):213–24. Available from: http://sphinxsai.com/2015/ph_vol8_no7/2/(213-224)V8N7.pdf
38. Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym [Internet]. 2017 Oct 1 [cited 2019 Jul 1]; 173:37–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28732878
39. Ahmed RZ, Patil G, Zaheer Z. Nanosponges – a completely new nano-horizon: pharmaceutical applications and recent advances. Drug Dev Ind Pharm [Internet]. 2013 Sep 11 [cited 2019 Jul 1];39(9):1263–72. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/22681585
40. Lu A-H, Salabas EL, Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew Chemie Int Ed [Internet]. 2007 Feb 12 [cited 2019 Jul 8];46(8):1222–44. Available from: http://doi.wiley.com/ 10.1002/anie.200602866
41. Bolmal UB, Manvi F V, Rajkumar K, Sowjanya Palla S, Paladugu A, Reddy KR. Recent Advances in Nanosponges as Drug Delivery System. Int J Pharm Sci Nanotechnol [Internet]. 2013 [cited 2019 Apr 24];6(1):1934–44. Available from: http:// www.ijpsnonline.com/Issues/1934_full.pdf
42. Alongi J, Poskovic M, Frache A, Trotta F. Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr Polym [Internet]. 2011 Aug 1 [cited 2019 Apr 24];86(1):127–35. Available from: https://www.sciencedirect.com/science/article/pii/ S0144861711002761
43. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17(6):419–25.
44. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193–201.
45. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharm Dev Technol [Internet]. 2013 Jun 12 [cited 2019 Apr 24];18(3):619–25. Available from: http:// www.tandfonline.com/ doi/full/ 10.3109/10837450.2011.649855
46. Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS Pharm Sci Tech [Internet]. 2011 Mar [cited 2019 Apr 24];12(1):279–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21240574
47. Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol [Internet]. 2013 Jun [cited 2019 Apr 24];9(6):998–1007. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23858964
48. Pavani A, Rama B. Formulation and in Vitro characterization of flurbiprofen nanosponges. Int J Res Pharm Chem [Internet]. 2018 [cited 2019 Apr 24];8(4):577–82. Available from: www.ijrpc.com
49. Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J Drug Deliv Sci Technol [Internet]. 2017 Oct [cited 2019 Apr 24]; 41: 344–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224717303994
50. Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm [Internet]. 2013 Feb 25 [cited 2019 Apr 24];443(1–2):262–72. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/ 23279938
51. Jilsha G., Viswanad V. Nanosponges: A novel approach of drug delivery system | G. Jilsha.  International J Pharm Sci Rev Res [Internet]. 2013 [cited 2019 Jul 14];19(2):119–23. Available from: https://www.researchgate.net/publication/281655795_Nanosponges_A_novel_approach_of_drug_delivery_system
52. Singireddy A, Pedireddi SR, Subramanian S. Optimization of reaction parameters for synthesis of Cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res [Internet]. 2019 Apr 19 [cited 2019 Jul 14];26(4):93. Available from: http://link.springer.com/10.1007/s10965-019-1754-0
53. Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol [Internet]. 2011 Aug 31 [cited 2019 Jul 9];16(4):367–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20367024
54. Subhash PB, Mohite SK. Formulation Design and Development of Artesunate Nanosponge. Eur J Pharm Mdical Res [Internet]. 2016 [cited 2019 Jul 1];3(5):206–11. Available from: www.ejpmr.com
55. Anuradha S, Seemadevi K, Magar S, Dangare K. Nanosponges : a Modern Formulation Approach in Drug. World J Pharm Pharm Sci. 2018;7(2):575–92.
56. M. KPD. Atorvastatin Loaded Nanosponges –A Novel Strategic Approach for Enhanced Bioavialability. World J Pharm Pharm Sci [Internet]. 2017 Aug 1 [cited 2019 Jul 9];1223–36. Available from: http://wjpps.com/wjpps_controller/abstract_id/7541
57. Abbas N, Parveen K, Hussain A, Latif S, Uz Zaman S, Shah PA, et al. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop J Pharm Res [Internet]. 2019 Mar 11 [cited 2019 Jul 14];18(2):215. Available from: https:// www.ajol.info/index.php/tjpr/article/view/184490
58. Srinivas P, K S. Formulation and Evaluation of Voriconazole Loaded Nanosponges for Oral and Topical Delivery. Int J Drug Dev Res [Internet]. 2009 [cited 2019 Apr 24];5(1):55–69. Available from: http://www.ijddr.in/drug-development/ formulation-and-evaluation-of-voriconazole-loaded-nanospongesfor-oral-and-topical-delivery.php?aid=5046
59. Jilsha G. and Viswanad Vidya. Nanosponge Loaded Hydrogel Of Cephalexin For Topical Delivery. Int J Pharm Sci Res [Internet]. 2015 [cited 2019 Aug 16];4(13100):7–13. Available from: http://ijpsr.com/bft-article/nanosponge-loaded-hydrogel-of-cephalexin-for-topical-delivery/?view=fulltext
60. PENJURI Subhash Chandra Bose, Damineni Saritha RN, BNS Sailakshmi. Formulation and Evaluation of Lansoprazole Loaded Nanosponges Subhash Chandra Bose PENJURI | Request PDF.  Turkish J Pharm Sci [Internet]. 2016 [cited 2019 Aug 16];13(3):304–10. Available from: https://www.researchgate.net/ publication/316512569_Formulation_and_Evaluation_of_Lansoprazole_Loaded_Nanosponges
61. Badr-Eldin SM, Aldawsari H, Labib G, El-Kamel A. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in and amp;nbsp;vivo and amp;nbsp;evaluation. Int J Nanomedicine [Internet]. 2015 Jan [cited 2019 Aug 16]; 10:893–902. Available from: http://www.dovepress.com/design-and-formulation-of-a-topical-hydrogel-integrating-lemongrass-lo-peer-reviewed-article-IJN
62. Srinivas P, Jahnavi Reddy A. Formulation and Evaluation of Isoniazid Loaded Nanosponges for Topical Delivery. Pharm Nanotechnol [Internet]. 2015 [cited 2019 Aug 16];3(1):68–76. Available from: https:// www.ingentaconnect.com/ content/ben/ pnt/2015/00000003/00000001/art00010
63. Shoaib Q, Abbas N, Irfan M, Hussain A, Sohail Arshad M, Zajif Hussain S, et al. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen licensed under the Creative Commons Attribution 4.0 International License. Trop J Pharm Res August [Internet]. 2018 [cited 2019 Apr 24];17(8):1465–74. Available from: http://www.tjpr.org
64. Sri KV, Santhoshini G, Sankar DR, Niharika K. Formulation and Evaluation of Rutin Loaded Nanosponges. Asian J Res Pharm Sci [Internet]. 2018 Mar 21 [cited 2019 Aug 16];8(1):21–4. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ajrpsandvolume=8andissue=1andarticle=005
65. Lala Rita, Thorat Amit, Gargote Chandrashekhar S. Current trends in β-cyclodextrin based drug delivery systems. Int J Res ayurveda Pharm [Internet]. 2010 [cited 2019 Apr 24];2(5):1520–6. Available from: https://www.researchgate.net/publication/ 284817884_Current_trends_in_b-cyclodextrin_based_drug_delivery_systems
66. Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R. Paclitaxel loaded nanosponges: in-vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv [Internet]. 2011 Mar [cited 2019 Jul 9];8(2):194–202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21235471
67. Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem [Internet]. 2013 Apr 14 [cited 2019 Aug 16];75(3–4):315–22. Available from: http://link.springer.com/ 10.1007/ s10847-012-0186-9
68. Kumar S, Pooja, Trotta F, Rao R. Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies. Pharmaceutics [Internet]. 2018 Sep 26 [cited 2019 Aug 16];10(4):169. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/30261580
69. Shastrulagari S. Shivani and Poladi Kranthi Kumar. Nanosponges-Novel Emerging Drug Delivery System : A Review. Int J Pharm Sci Res [Internet]. 2015 [cited 2019 Aug 16];6(2):529. Available from: https://www.semanticscholar.org/paper/Nanosponges-NoveL-Emerging-Drug-Delivery-System-%3A-A-Shivani-Poladi/30162069fd26c268df303083c3f0221c29f52356
70. Rao MRP, Shirsath C. Enhancement of Bioavailability of Non-nucleoside Reverse Transciptase Inhibitor Using Nanosponges. AAPS PharmSciTech [Internet]. 2017 Jul 18 [cited 2019 Jul 9];18(5):1728–38. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/27757921
71. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem [Internet]. 2013 Dec 23 [cited 2019 Jul 9];77(1–4):135–45. Available from: http://link.springer.com/10.1007/s10847-012-0224-7
72. Shende P, Deshmukh K, Trotta F, Caldera F. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int J Pharm. 2013;456(1):95–100.
73. Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem [Internet]. 2010 Oct 25 [cited 2019 Jul 9];68(1–2):183–91. Available from: http://link.springer.com/10.1007/s10847-010-9765-9
74. Yadav GV, Panchory HP. “Nanosponges – a Boon To the Targeted Drug Delivery System.” J Drug Deliv Ther. 2016;3(4):151–5.
75. Daga M, Ullio C, Argenziano M, Dianzani C, Cavalli R, Trotta F, et al. GSH-targeted nanosponges increase doxorubicin-induced toxicity “in vitro” and “in vivo” in cancer cells with high antioxidant defenses. Free Radic Biol Med [Internet]. 2016 Aug [cited 2019 Aug 16]; 97:24–37. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/27184956
76. Lambert WS, Carlson BJ, van der Ende AE, Shih G, Dobish JN, Calkins DJ, et al. Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Transl Vis Sci Technol [Internet]. 2015 Jan [cited 2019 Apr 24];4(1):1. Available from: http:// www.ncbi.nlm.nih.gov/ pubmed/ 25599009
77. Method for preparing dextrin nanosponges [Internet]. WO2012147069A1, 2012 [cited 2019 Apr 24]. Available from: https://patents.google.com/patent/WO2012147069A1/en
78. Farrell Declan, Limaye Santosh, Subramanian Shanthi. Silicon Nanosponge Particles [Internet]. US20060251561A1, 2006 [cited 2019 Apr 24]. Available from: https://patents.google.com/patent/ US20060251561A1/ en
79. Muthusamy Eswaramoorthy, Katla Saikrishana. A template free and polymer free metal nanosponge and a process thereof [Internet]. WO2009138998A2, 2009 [cited 2019 Apr 24]. Available from: https://patents.google.com/ patent/ WO2009138998A2/ en
80. Nanoparticles, Nanosponges, Methods of Synthesis, and Methods of Use [Internet]. US20140370422A1, 2014 [cited 2019 Apr 24]. Available from: https://patents.google.com/patent/ US20140370422A1/en
81. Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Roggero C VR. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges [Internet]. WO2006002814A1, 2005 [cited 2019 Jul 26]. Available from: https:// patents.google.com/ patent/ WO2006002814A1/ en?oq=nanosponges+formulation
82. Trotta F, Tumiatti V, Cavalli R, Rogero C, Mognetti B BG. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs [Internet]. EP2175847A1, 2008 [cited 2019 Jul 26]. Available from: https://patents.google.com/patent/EP2175847A1/ en?oq=nanosponges+formulation
83. Paolo F, Elisabetta R, Cavalli R TF. Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies [Internet]. EP2294190A1, 2009 [cited 2019 Jul 26]. Available from: https://patents.google.com/patent/EP2294190A1/en?oq=nanosponges
84.  Roggero CM, Dicarlo S, Tumiatti V, Tumiatti M, Devecchi M, Scariot V KS. Use of functionalised nanosponges for the growth, conservation, protection and disinfection of vegetable organisms [Internet]. WO2013046165A1, 2013 [cited 2019 Jul 26]. Available from: https://patents.google.com/patent/WO2013046165A1/ en?oq=nanosponges

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available