Author(s): Murali Badanthadka, Lidwin D’Souza

Email(s): murali@nitte.edu.in

DOI: 10.5958/0974-360X.2020.00621.6   

Address: Murali Badanthadka1*,Lidwin D’Souza2
1Nitte University Centre for Animal Research and Experimentation (NUCARE), Division of NGSMIPS, Paneer, Deralakatte, Mangalore-575018.
2Norwich Clinical Services Pvt. Ltd.147/F, 8th Main, 3rd Block, Koramangala, Bangalore - 560034.
*Corresponding Author

Published In:   Volume - 13,      Issue - 7,     Year - 2020


ABSTRACT:
Psoriasisis an autoimmune, inflammatory skin disease known to lead by the combination of genetic and environmental factors. Globally it affects around 2-3% of the population, which significantly affect the quality of life of the people because of its chronic nature and financial burden. The disease develops as the consequence of the complex interplay between the immune system, epidermal keratinocytes, and other APCs. The lack of a suitable model vastly hindered the research in psoriasis. Over the years, developed number of animal models, but none of them were proved to be completely mimic the phenotype and mechanism supports the disease progression. IMQ is used for the treatment of neoplastic and viral skin diseases, including perianal and genital warts, actinic keratosis, and superficial basal cell carcinoma. However, repeated application of IMQ leads to psoriasiform dermatitis by the activation of toll-like receptor 7/8, which accelerates to the release of inflammatory cytokines by the involved mechanisms. Although many preclinical models are available for the screening of antipsoriatic agents, IMQ-induced psoriasis has been considered as an easy, convenient, immunologically clean animal model. Over the years, the utilization of this model is significantly increased. There also exist some limitations which cannot be over looked. Attentive contemplations are necessary for the interpretation of the results obtained by employing this model. In this review, we provided an insight into the IMQ-induced psoriasis mice model.


Cite this article:
Murali Badanthadka, Lidwin D’Souza. Imiquimod-Induced Psoriasis Mice Model: A Promising Tool for Psoriasis Research?. Research J. Pharm. and Tech. 2020; 13(7): 3508-3515. doi: 10.5958/0974-360X.2020.00621.6

Cite(Electronic):
Murali Badanthadka, Lidwin D’Souza. Imiquimod-Induced Psoriasis Mice Model: A Promising Tool for Psoriasis Research?. Research J. Pharm. and Tech. 2020; 13(7): 3508-3515. doi: 10.5958/0974-360X.2020.00621.6   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-7-81


REFERENCES:
1. Nickoloff B, Nestle F. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. Journal of Clinical Investigation. 2004; 113:1664-75
2. Weger W. Current status and new developments in the treatment of psoriasis and psoriatic arthritis with biological agents. British Journal of Pharmacology. 2010; 160:810-20.
3. Schn M. Animal models of psoriasis: a critical appraisal. Experimental Dermatology. 2008; 17:703-12.
4. Gustafson C, Watkins C, Hix E, Feldman S. Combination Therapy in Psoriasis. American Journal of Clinical Dermatology. 2012; 14:9-25.
5. Nestle FO, Nickoloff BJ, Classical mouse models of psoriasis to a spontaneous xenograft model featuring use of AGR mice. Ernst Schering Res Found Workshop. 2005; (50):203-12.
6. Danilenko, D.M. Review paper: Preclinical models of psoriasis. Vet. Pathol. 2008, 45, 563–75.
7. Bocheńska K, Smolińska E, Moskot M, Jakóbkiewicz-Banecka J, Gabig-Cimińska M. Models in the Research Process of Psoriasis. Int J Mol Sci. 2017, 18. pii: E2514.
8. Schön M, Schön M. Imiquimod: mode of action. British Journal of Dermatology. 2007; 157:8-13.
9. Bubna A. Imiquimod - Its role in the treatment of cutaneous malignancies. Indian Journal of Pharmacology. 2015; 47:354-9.
10. Lai CY, Su YW, Lin KI, Hsu LC, Chuang TH. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation. J Immunol Res. 2017; 2017:7807313.
11. Wu JK, Siller G, Strutton G. Psoriasis induced by topical imiquimod. Australas J Dermatol. 2004; 45:47-50.
12. Fanti PA, Dika E, Vaccari S, Miscial C, Varotti C. Generalized psoriasis induced by topical treatment of actinic keratosis with imiquimod. Int J Dermatol.2006; 45:1464-5.
13. Taylor CL, Maslen M, Kapembwa M. A case of severe eczema following use of imiquimod 5% cream. Sex Transm Infect. 2006; 82:227-8.
14. Rajan N, Langtry JA. Generalized exacerbation of psoriasis associated with imiquimod cream treatment of superficial basal cell carcinomas. ClinExpDermatol. 2006; 31:140-1.
15. O'Mahony C, Yesudian PD, Stanley M. Imiquimod use in the genital area and development of lichen sclerosus and lichen planus. Int J STD AIDS. 2010; 21:219-21.
16. van der Fits L, Mourits S, Voerman J, Kant M, Boon L, Laman J et al. Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis. The Journal of Immunology. 2009; 182:5836-45.
17. Sun J, Dou W, Zhao Y, Hu J. A comparison of the effects of topical treatment of calcipotriol, camptothecin, clobetasol and tazarotene on an imiquimod-induced psoriasis-like mouse model. Immunopharmacology and Immunotoxicology. 2013; 36:17-24.
18. Hawkes J, Gudjonsson J, Ward N. The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal. Journal of Investigative Dermatology. 2017; 137:546-49.
19. Avasatthi V, Pawar H, Dora C, Bansod P, Gill M, Suresh S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: optimization, in vitroandinvivoevaluation. Pharmaceutical Development and Technology. 2016;5:554-62.
20. Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med. 2016; 31; 16:334.
21. Alvarez P, Jensen LE. Imiquimod Treatment Causes Systemic Disease in Mice Resembling Generalized Pustular Psoriasis in an IL-1 and IL-36 Dependent Manner. Mediators Inflamm. 2016; 2016:6756138.
22. Lin YK, Yang SH, Chen CC, Kao HC, Fang JY. Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs. PLoS One. 2015;10:e0137890.
23. Yanaba K, Kamata M, Ishiura N, Shibata S, Asano Y, Tada Y, et al. Regulatory B cells suppress imiquimod-induced, psoriasis-like skin inflammation. J Leukoc Biol. 2013; 94:563-73.
24. Sakai K, Sanders KM, Youssef MR, Yanushefski KM, Jensen L, Yosipovitch G, et al. Mouse model of imiquimod-induced psoriatic itch. Pain. 2016 Nov; 157:2536-43.
25. Flutter B, Nestle F. TLRs to cytokines: Mechanistic insights from the imiquimod mouse model of psoriasis. European Journal of Immunology. 2013; 43:3138-46.
26. Hawkes J, Gudjonsson J, Ward N. The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal. Journal of Investigative Dermatology. 2017; 137:546-49.
27. Lin YK, Yang SH, Chen CC, Kao HC, Fang JY. Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs. PLoS One. 2015; 10:e0137890.
28. Chen HH, Chao YH, Chen DY, Yang DH, Chung TW, Li YR, et al. Oral administration of acarbose ameliorates imiquimod-induced psoriasis-likedermatitis in a mouse model. IntImmunopharmacol. 2016; 33:70-82.
29. Wang X, Sun J, Hu J. IMQ Induced K14-VEGF Mouse: A Stable and Long-Term Mouse Model of Psoriasis-Like Inflammation. PLoS One. 2015; 10:e0145498.
30. Ando N, Nakamura Y, Aoki R, Ishimaru K, Ogawa H, Okumura K, et al. Circadian Gene Clock Regulates Psoriasis-Like Skin Inflammation in Mice. J Invest Dermatol. 2015; 135:3001-8.
31. Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, Sugita K, et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J Invest Dermatol. 2014; 134:1912-21.
32. Luo DQ, Wu HH, Zhao YK, Liu JH, Wang F. Original Research: Different imiquimod creams resulting in differential effects for imiquimod-induced psoriatic mouse models. ExpBiol Med (Maywood). 2016; 241:1733-8.
33. El Malki K, Karbach SH, Huppert J, Zayoud M, Reissig S, Schüler R, et al. An alternative pathway of imiquimod-induced psoriasis-like skin inflammation in the absence of interleukin-17 receptor a signaling. J Invest Dermatol. 2013; 133:441-51
34. Horváth S, Komlódi R, Perkecz A, Pintér E, Gyulai R, Kemény Á. Methodological refinement of Aldara-induced psoriasiform dermatitis model in mice. Sci Rep. 2019; 9:3685.
35. Mori H, Arita K, Yamaguchi T, Hirai M, Kurebayashi Y. Effects of Topical Application of Betamethasone on Imiquimod-induced Psoriasis-like Skin Inflammation in Mice. Kobe J Med Sci. 2016; 62:E79-E88.
36. Zanvit P, Konkel JE, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015; 6:8424.
37. Bezdek S, Hdnah A, Sezin T, Mousavi S, Zillikens D, Ibrahim S et al. The genetic difference betweenC57Bl/6JandC57Bl/6Nmice significantly impacts Aldara™-induced psoriasiform dermatitis. Experimental Dermatology. 2016; 26:349-51.
38. Swindell W, Michaels K, Sutter A, Diaconu D, Fritz Y, Xing X, et al. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Medicine. 2017; 9: 24.
39. Bai S, Zhang Z, Hou S, Liu X. Influence of different types of contact hypersensitivity on imiquimod-induced psoriasis-like inflammation in mice. Mol Med Rep. 2016; 14:671-80.
40. Okasha EF, Bayomy NA, Abdelaziz EZ. Effect of Topical Application of Black Seed Oil on Imiquimod-Induced Psoriasis-like Lesions in the Thin Skin of Adult Male Albino Rats. Anat Rec (Hoboken). 2018;301:166-74
41. Kanemaru K, Matsuyuki A, Nakamura Y, Fukami K. Obesity exacerbates imiquimod-induced psoriasis-like epidermal hyperplasia and interleukin-17 and interleukin-22 production in mice. ExpDermatol. 2015; 24:436-42.
42. Frenzel DF, Borkner L, Scheurmann J, Singh K, Scharffetter-Kochanek K, Weiss JM.Osteopontin deficiency affects imiquimod-induced psoriasis-like murine skin inflammation and lymphocyte distribution in skin, draining lymph nodes and spleen.ExpDermatol. 2015; 24:305-7.
43. Vasseur P, Pohin M, Jégou JF, Favot L, Venisse N, Mcheik J, et al., Liver fibrosis is associated with cutaneous inflammation in the imiquimod-induced murine model of psoriasiform dermatitis. Br J Dermatol. 2018; 179: 101-9. 
44. Mitsui A, Tada Y, Shibata S, Kamata M, Hau C, Asahina A et al. Deficiency of both L-selectin and ICAM-1 exacerbates imiquimod-induced psoriasis-like skin inflammation through increased infiltration of antigen presenting cells. Clinical Immunology. 2015; 157:43-55.
45. Hau C, Kanda N, Tada Y, Shibata S, Sato S, Watanabe S. Prolactin induces the production of Th17 and Th1 cytokines/chemokines in murine Imiquimod-induced psoriasiform skin. Journal of the European Academy of Dermatology and Venereology. 2013; 28:1370-79.
46. Carceller E, Ballegeer M, Deckers J, Riccardi C, Bruscoli S, Hochepied T et al. Overexpression of Glucocorticoid-induced Leucine Zipper (GILZ) increases susceptibility to Imiquimod-induced psoriasis and involves cutaneous activation of TGF-β1. Sci Rep. 2016; 6: 38825.
47. Zákostelská Z, Málková J, Klimešová K, Rossmann P, Hornová M, Novosádová I et al. Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response. PLOS ONE. 2016; 11:e0159539.
48. Yamaguchi Y, Watanabe Y, Watanabe T, Komitsu N, AiharaM.Decreased Expression of Caveolin-1 Contributes to the Pathogenesis of Psoriasiform Dermatitis in Mice.J Invest Dermatol. 2015; 135:2764-74.
49. Hau C, Kanda N, Tada Y, Shibata S, Uozaki H, Fukusato T et al. Lipocalin-2 exacerbates psoriasiform skin inflammation by augmenting T-helper 17 response. The Journal of Dermatology. 2015; 43:785-94.
50. Tula E, Ergun T, Seckin D, Ozgen Z, Avsar E. Psoriasis and the liver: problems, causes and course. Australas J Dermatol. 2017; 58:194-99.
51. Al-Harbi NO, Nadeem A, Al-Harbi MM, Zoheir KM, Ansari MA, El-Sherbeeny AM, et al. Psoriatic inflammation causes hepatic inflammation with concomitant dysregulation in hepatic metabolism via IL-17A/IL-17 receptor signaling in a murine model. Immunobiology. 2017; 222:128-36.
52. Nadeem A, Ahmad SF, Al-Harbi NO, Fardan AS, El-Sherbeeny AM, Ibrahim KE, et al. IL-17A causes depression-like symptoms via NFκB and p38MAPK signaling pathways in mice: Implications for psoriasis associated depression. Cytokine. 2017; 97:14-24.
53. Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, Sugita K et al. IL-23 from Langerhans Cells Is Required for the Development of Imiquimod-Induced Psoriasis-Like Dermatitis by Induction of IL-17A-Producing γδ T Cells. Journal of Investigative Dermatology. 2014; 134:1912-1921.
54. Zhang J, Lin Y, Li C, Zhang X, Cheng L, Dai L, et al. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis.J Immunol. 2016 Sep 15; 197:2131-44.
55. Duan Y, Dong Y, Hu H, Wang Q, Guo S, Fu D, et al. IL-33 contributes to disease severity in Psoriasis-like models of mouse. Cytokine. 2019; 119:159-67. 
56. Niu XL, Huang Y, Gao YL, Sun YZ, Han Y, Chen HD, et al. Interleukin-18 exacerbates skin inflammation and affects microabscesses and scale formation in a mouse model of imiquimod-induced psoriasis. Chin Med J (Engl). 2019; 132:690-98.
57. Works MG, Yin F, Yin CC, Yiu Y, Shew K, Tran TT, et al. Inhibition of TYK2 and JAK1 ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting IL-22 and the IL-23/IL-17 axis.J Immunol. 2014; 193:3278-87.
58. Morimura S, Oka T, Sugaya M, Sato S.CX3CR1 deficiency attenuates imiquimod-induced psoriasis-like skin inflammation with decreased M1 macrophages.J Dermatol Sci. 2016; 82:175-88.
59. Grine L, Dejager L, Libert C, VandenbrouckeRE.Dual Inhibition of TNFR1 and IFNAR1 inImiquimod-Induced Psoriasiform Skin Inflammation in Mice. The Journal of Immunology. 2015; 194: 5094–5102.
60. Kjær TN, Thorsen K, Jessen N, Stenderup K, Pedersen SB. Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. PLoS One. 2015;10:e0126599.
61. Xiong H, Xu Y, Tan G, Han Y, Tang Z, Xu W, et al. Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-α-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cell PhysiolBiochem. 2015; 35:1335-46.
62. Sun Y, Zhang J, Huo R, Zhai T, Li H, Wu P, et al. Paeoniflorin inhibits skin lesions in imiquimod-induced psoriasis-like mice by downregulating inflammation. IntImmunopharmacol. 2015; 24:392-99.
63. Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One. 2013; 8:e67078.
64. Li YL, Du ZY, Li PH, Yan L, Zhou W, Tang YD, et al. Aromatic-turmerone ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. IntImmunopharmacol. 2018; 64:319-25.
65. Wang Y, Zhao J, Zhang L, Di T, Liu X, Lin Y, et al. Suppressive effect of β, β-dimethylacryloylalkannin on activated dendritic cells in an imiquimod-induced psoriasis mouse model. Int J ClinExpPathol 2015; 8:6665-73.
66. Yang R, Zhou Q, Wen C, Hu J, Li H, Zhao M, et al. Mustard seed (Sinapis Alba Linn) attenuates imiquimod-induced psoriasiform inflammation of BALB/c mice. J Dermatol. 2013; 40:543-52.
67. Shao F, Tan T, Tan Y, Sun Y, Wu X, Xu Q. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.BiochemPharmacol. 2016; 115:94-103.
68. Di TT, Ruan ZT, Zhao JX, Wang Y, Liu X, Wang Y, et al. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. IntImmunopharmacol. 2016; 32:32-38.
69. Li ZJ, Shin JM, Choi DK, Lim SK, Yoon TJ, Lee YH, et al. Inhibitory effect of cucurbitacin B on imiquimod-induced skin inflammation. BiochemBiophys Res Commun. 2015; 459:673-8.
70. Li MH, Wu HC, Yao HJ, Lin CC, Wen SF, Pan IH. Antrodiacinnamomea Extract Inhibits Th17 Cell Differentiation and Ameliorates Imiquimod-Induced Psoriasiform Skin Inflammation. Am J Chin Med. 2015; 43:1401-17.
71. Zhao J, Di T, Wang Y, Liu X, Liang D, Zhang G, et al. Multi-glycoside of Tripterygiumwilfordii Hook. f. ameliorates imiquimod-induced skin lesions through a STAT3-dependent mechanism involving the inhibition of Th17-mediated inflammatory responses. Int J Mol Med. 2016; 38:747-57.
72. Wu Y, Chen X, Ge X, Xia H, Wang Y, Su S, et al. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. J Mol Med (Berl). 2016; 94:195-206.
73. Chen H, Lu C, Liu H, Wang M, Zhao H, Yan Y, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. IntImmunopharmacol. 2017; 48:110-117.
74. Okasha EF, Bayomy NA, Abdelaziz EZ. Effect of Topical Application of Black Seed Oil on Imiquimod-Induced Psoriasis-like Lesions in the Thin Skin of Adult Male Albino Rats. Anat Rec (Hoboken). 2018; 301:166-174
75. Chen S, Han K, Li H, Cen J, Yang Y, Wu H, et al. Isogarcinol Extracted from Garciniamangostana L. Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesions in Mice. J Agric Food Chem. 2017; 65:846-57.
76. Parmar KM, Itankar PR, Joshi A, Prasad SK. Anti-psoriatic potential of Solanumxanthocarpum stem in Imiquimod-induced psoriatic mice model. J Ethnopharmacol. 2017; 198:158-66.
77. Jeon YJ, Sah SK, Yang HS, Lee JH, Shin J, Kim TY. Rhododendrin inhibits toll-like receptor-7-mediated psoriasis-like skin inflammation in mice. ExpMol Med. 2017; 49:e349.
78. Nimisha, Rizvi DA, Fatima Z, Neema, Kaur CD. Antipsoriatic and Anti-inflammatory Studies of Berberisaristata Extract Loaded Nanovesicular Gels. Pharmacogn Mag. 2017; 13:S587-S594.
79. Palombo R, Savini I, Avigliano L, Madonna S, Cavani A, Albanesi C, et al. Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death Dis. 2016; 7:e2344.
80. Dou R, Liu Z, Yuan X, Xiangfei D, Bai R, Bi Z, et al. PAMs ameliorates the imiquimod- induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines. PLoS ONE 2017; 12: e0176823.
81. Yang BY, Cheng YG, Liu Y, Liu Y, Tan JY, Guan W, et al. Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis and Inhibits Inflammatory Cytokines Production through TLR7/8-MyD88-NF-κB-NLRP3 Inflammasome Pathway. Molecules. 2019; 24:pii: E2157.
82. Lo HY, Li CC, Cheng HM, Liu IC, Ho TY, Hsiang CY. Ferulic acid altered IL-17A/IL-17RA interaction and protected against imiquimod-induced psoriasis-like skin injury in mice. Food ChemToxicol. 2019; 129:365-75.
83. Sun S, Zhang X, Xu M, Zhang F, Tian F, Cui J, et al. Berberinedownregulates CDC6 and inhibits proliferation via targeting JAK-STAT3signaling in keratinocytes. Cell Death Dis. 2019; 10:274.
84. Li X, Xie X, Zhang L, Meng Y, Li N, Wang M, et al. Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway. Life Sci. 2019; 219:311-21.
85. Kim HK, Bae MJ, Lim S, Lee W, Kim S. A Water-Soluble Extract from Actinidiaarguta Ameliorates Psoriasis-Like Skin Inflammation in Mice by Inhibition of Neutrophil Infiltration. Nutrients. 2018;10:pii: E1399.
86. Chen Y, Zhang Q, Liu H, Lu C, Liang CL, Qiu F, et al. Esculetin Ameliorates Psoriasis-Like Skin Disease in Mice by Inducing CD4(+)Foxp3(+) Regulatory T Cells. Front Immunol. 2018; 9:2092.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available