REFERENCE:
1. Nancy AK. Tuberculosis: Pathophysiology, Clinical features and diagnosis. Critical care nurse. 2009;29(2):34-43.
2. World Health organization (WHO) [Internet]. Tuberculosis: Factsheets; 2018 [cited 2019 May 3]. Available from: https:// www.who.int/news-room/ fact-sheets/detail/tuberculosis.
3. Sagavkar Sandhyarani R, Devkar Swati R. Tuberculosis: A Review. Asian Journal of Pharmaceutical Research. 2018; 8(3): 191-194.
4. Lalit K, Rajan, Vivek S. Tuberculosis: A Brief Overview Asian Journal of Pharmaceutical Research. 2012; 2(2): 59-62.
5. Lamees M. Immunological and Biochemical Changes Related of Tuberculosis in Human. Research Journal of Pharmacy and Technology. 2019; 12(7): 3428-3430.
6. Uma S, Swarna Latha S, Arun Satyadev S, Neelima P. Influence of HIV, Malnutrition and Patient Non-Compliance on the Prevalence and Prognosis of Tuberculosis: A Fatal Infectious Disease. Research Journal of Pharmacy and Technology. 2015; 8(10): 1365-1368.
7. Sandip Z, Shweta AP, Sushmita SR. Rise of Antibiotic Resistance in Tuberculosis. Research Journal of Pharmacy and Technology. 2018; 11(7): 3201-3204.
8. Syed Safiullah G, Mohammed Abdul Q, Hafsa Khalid. A Clinical Study of Acute Kidney Injury on using Antituberculosis Drugs in Geriatrics. Research J. Pharm. and Tech. 2017; 10(6): 1746-1750.
9. World Health organization (WHO) [Internet]. Percentage of New cases with MDR/RR TB; 2018 [cited 2019 May 3]. Available from: http://gamapserver.who.int/ map Library/ app/ searchResults.aspx.
10. Islam MM, Adnan HM, Mugweru J, Chhotaray C, Wang C, Tan Y, et al. Drug Resistance Mechanism and Novel Drug targets for tuberculosis therapy. Journal of Gene and Genom. 2017; 44:21-37.
11. Subramaniam S, Sangeetha D. Identification of New Inhibitor against Mycobacterium tuberculosis using structure based Drug Designing and Docking Studies. Research Journal of Pharmacognosy and Phytochemistry. 2017; 9(3): 173-176.
12. Prafulla S, Dhiraj B, Vidya S. Synthesis and Anti-Tubercular Activity of Substituted Phenylpyrazole having Benzimidazole Ring. Research Journal of Pharmacy and Technology. 2018; 11(8): 3599-3608.
13. Kwonjune JS, Salmaan K, Michael LR. Multidrug Resistance Tuberculosis and Extensive Drug Resistance Tuberculosis. Cold Spring Hrab Perspect Med. 2015; 5:1-20.
14. Aejaz A, Khurshid IM, Gulam JK. Synthesis, characterization and anti-inflammatory activity some 1-(4- substituted)-2-(-4-(piperazine-1-yl) bis-thiazole-5-yl) 2-methyl-4-nitro-1himidazole- 1-yl) ethanone. Asian Journal of Research in Chemistry. 2017; 10(2): 158-165.
15. Shaikh AA, Raguwanshi MG. Synthesis, Characterization of Some Novel Schiff’s bases of 4-((2-methyl- 4/5-nitro-1H-imidazol-1-yl) methyl) thiazol-2-amine and their Antimicrobial Activity. Asian Journal of Research in Chemistry. 2016; 9(11): 578-596.
16. Alka M. Synthetic NItroimidazoles: Biological activity and Mutagenesity Relationships. Scientia Pharmaceutica. 2009; 77:497-520.
17. Cavalleri B, Volpe G, Arioli V, Parenti F. Synthesis and biological activity of some 2- aminoimidazoles. Arzneimittelforschung. 1977;27(10):1889–95.
18. Schmid A, Schmid H. Pharmaco-toxicological mode of action of antimicrobial 5-nitroimidazole derivatives. Zentralbl Veterinarmed A. 1999;46(9):517–22.
19. Stover CK. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962-6.
20. Nagarajan, K, Shankar RG, Rajappa S, Shenoy SJ, Costa- Pereira R. Nitroimidazoles XXI 2,3-Dihydro-6-nitroimidazo[2,1-b]- oxazoles with Antitubercular Activity. European Journal of Medicinal Chemistry. 1989; 24:631-3.
21. MedKoo Bioscience, Inc. [Internet]. United States. CGI-17341, Product information; 2019 [cited 2019 May 4]. Available from: https://medkoo.com/products/14132.
22. Tathagata M, Helana B. Nitroimidazole for treatment of TB: Past, present and future. Future Medicinal Chemistry. 2011;3(11):1427-54.
23. Ashtekar DR, Costa-perira R, Nagrajan K, Vishwanatham M, Bhatt AD, Rittel W. In Vitro and In Vivo activities of Nitroimidazole CGI 17341 against Mycobacterium. Tuberculosis. 1993;37(2):183-6.
24. Strover CK, Warrener P, VanDeventer DR, Sherman DR, Arain TM, Langhorem MH, et al. A small molecule. Letters to Nature 2000; 405:962-6.
25. Hirofuni S, Yoshikazu S, Motohiro I, Hidekai K, Hiroyuki H, Tatsuo T, et al. Synthesis and Antituberculosis Activity of a Novel Series of Optically Active 6-Nitro-2,3-dihydroimidazo[2,1-b]oxazoles. Journal of Medicinal Chemistry. 2006; 49:7854-60.
26. Ujjini HM, Helena B, Cynthia SD, Liang Z, Thomas JA, Jason EN, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. PNAS. 2006;103(2):431-6.
27. Adis Insight. [Internet]. Springer Publication. TBA-354, Drug Profile; 2019 [cited 2019 May 8]. Available from: https://adisinsight.springer.com/drugs/800042070.
28. Stop TB Partnership. [Internet]. Geneva. Working group on new TB drugs, TBA-354; 2019 [cited 2019 May 8]. Available from: https://www.newtbdrugs.org/pipeline/compound/tba-354.
29. Kmentova I, Sutherland HS, Palmer BD, Blaser A, Franzblau SG, Wan B, et al. Synthesis and Structure– Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6, 7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). Journal of Medicinal Chemistry. 2010;53: 8421-39.
30. Tanseen R, Williams K, Amoabeng O, Minkowsi A, Mdluli KE, Upton AM, et al. Contribution of the Nitroimidazoles PA-824 and TBA-354 to the Activity of Novel Regimens in Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy. 2015; 59:129-35.
31. Upton AM, Cho S, Kim Y, Yang JT, Wang Y, Lu Y, et al.In Vitro and In Vivo Activities of the Nitroimidazole TBA-354 againsT Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy. 2015; 59:136-44.
32. U.S. National Library of Medicine. [Internet]. Unites States. A phase 1 study to evaluate the Safety, Tolerability and Pharmacokinetics of TBA-354 in Healthy adult Subjects; 2019 [cited 2019 May 9]. Available from: https://clinicaltrials.gov/ct2/ show/ study/ NCT02288481.
33. TB Alliance. [Internet]. New York. Phase 1 Clinical trial of drug candidate TBA-354 discontinued; 2019 [cited 2019 May 9]. Available from: https://www.tballiance.org/news/phase-1-clinical-trial-tb-drug-candidate-tba-354-discontinued
34. Ntshangase S, Shobo A, Kruger HG, Asperger A, Niemeyer D, Arvidsson PI, et al. The downfall of TBA-354 – a possible explanation for its neurotoxicity via mass spectrometric imaging. Xenobiotica. 2017;48(9):938-44.
35. Adis Insight. [Internet]. Springer. Pretomanid – Global Alliance for TB Drug development, Drug Profile; 2019 [cited 2019 May 11]. Available from: https://adisinsight.springer.com/drugs/ 800007841.
36. TB Alliance. [Internet]. New York. TB Medicine Pretomanid Enters Regulatory review process In the United States; 2019 [cited 2019 May 11]. Available from: https://www.tballiance.org/news/ pretomanid-enters-FDA-review.
37. TB Alliance. [Internet]. New York. PA-824 has a new generic name: Pretomanid, Press release; 2019 [cited 2019 May 11]. Available from: https://www.tballiance.org/news/pa-824-has-new-generic-name-pretomanid.
38. Stop TB Partnership. [Internet] Geneva. Pretomanid. Working group on new TB drugs; 2019 [cited 2019 May 11]. Available from: https://www.newtbdrugs.org/pipeline/compound/ pretomanid.
39. Patel RV, Keum Y, Park SV. Nitroimidazoles, Quinolones and Oxazolidinones as Fluorine Bearing Antitubercular Clinical Candidates. Mini Reviews in Medicinal Chemistry. 2015;15(14):1174-86.
40. PA-824. Tuberculosis. 2008;88(2):134-6.
41. Kim P, Zhang L, Manjunatha UH, Singh R, Patel S, Jiricek J, et al. Structure-activity relationships of antitubercular nitroimidazoles. I. Structural features associated with aerobic and anaerobic activities of 4- and 5-nitroimidazoles. Journal of Medicinal Chemistry. 2009;52(5):1317-28.
42. Manjunatha UH, Boshoff, HI, Bary III CE. The Mechanism of action of PA-824. Community Integral Biology. 2009;2(3):215-8.
43. Thompson AM, Blaser A, Anderson RF, Shinde SS, Franzblau SG, Ma Z, et al. Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). Journal of Medicinal Chemistry. 2009; 52:637-45.
44. Somasundaram S, Anand RA, Venkatesan P, Pramsivan CN. Bactericidal activity of PA-824 against Mycobacterium tuberculosis under anaerobic conditions and computational analysis of its novel analogues against mutant Ddn receptor. BMC microbiology. 2013; 13:218.
45. Rakesh P, Bruhm DF, Scherman MS, Singh AP, Yang L, Liu J, et al. Synthesis and evaluation of Pretomanid (PA-824) oxazolidinone hybrids. Bioorganic and Medicinal Chemistry Letters. 2016;26(2):388-91.
46. Thompson AM, Bonnet M, Lee HH, Franzblau SG, Wan B, Wong GS, et al. Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3‑Nitro Isomer of Pretomanid. ACS Medicinal Chemistry Letters. 2017;8: 1275-80.
47. Stop TB Partnership. [Internet]. Geneva. Delamanid. Working group on new TB drugs; 2019 [cited 2019 May 13]. Available from: https://www.newtbdrugs.org/pipeline/compound/delamanid-0.
48. TB Online. [Internet]. Global TB Community Advisory Board. OPC-67683 by Joan Leavens; 2019 [cited 2019 May 13]. Available from: http://www.tbonline.info/posts/2011/9/15/ opc67683/.
49. National Library of Medicine. [Internet]. United States. Safety, Efficacy and Pharmacokinetics of OPC-67683 in patients with pulmonary tuberculosis; 2019 [cited 2019 May 13]. Available From: https://clinicaltrials.gov/ct2/show/NCT00401271.
50. Stop TB Partnership. [Internet]. Geneva. News Stories; 2016 [cited 2019 May 13]. Available from: http://www.stoptb.org/news/ stories/2016/ ns16_005.asp#.
51. Showalter HD, Denny WA. A roadmap for drug discovery and its translation to small molecule agents in clinical development for tuberculosis treatment. Tuberculosis. 2008;88(Suppl-1): S3-S17.
52. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC- 67683, a nitro-dihydroimidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Medicine. 2006;3(11):2131-44.
53. Saliu OY, Crismale C, Schwander SK, Wallis RS. Bactericidal activity of OPC-67683 against drug-tolerant Mycobacterium tuberculosis. Journal Antimicrobial and Chemotherapy. 2007; 60:994–8.
54. Diacon AH, Dawson R, Hanekom M, Narunsky K, Venter A, Hittel N, et al.Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. International Journal of Tubeculosis and Lung Diseases. 2011;15(7):949–54.
55. Gler MT, Skripconoka V, Sanchez-Gravito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE. Delamanid for Multidrug-Resistant Pulmonary Tuberculosis. New England Journal of Medicine. 2012;366(23):2151-60.
56. Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. European Respiratory Journal. 2013;41(6):1393-1400.
57. Caminero JA, Scardigli A. Classification of antituberculosis drugs: a new proposal based on the most recent evidence. European Respiratory Journal. 2015; 46:887-93.
58. Sotgui G, Pontali E, Centis R, D’Ambrosio L, Battista G, Migliori. Delamanid (OPC-67683) for treatment of multi-drug-resistance tuberculosis. Expert Reviews in AntiInfection Therapy. 2015;13(3):305–15.
59. Stinson K, Kurepina N, Venter A, Fujiwara M, Kawasaki M, Timm J, et al.MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration. Antimicrobial agents and Chemotherapy. 2016;60(6):3316-22.