Author(s): Sukma Sahadewa, Djanggan Sargowo, Muhammad Aris widodo, HMS Chandra Kusuma


DOI: 10.5958/0974-360X.2020.00606.X   

Address: Sukma Sahadewa1,2*, Djanggan Sargowo3, Muhammad Aris widodo4, HMS Chandra Kusuma5
1Doctoral Program of Medical Science, Medical Faculty, Universitas Brawijaya, Malang, East Java, Indonesia.
2Department of Public Health, Medical Faculty, Universitas Wijaya Kusuma, Surabaya, East Java Indonesia.
3Cardiology and Vascular Medicine Department, Faculty of Medicine, Brawijaya University Malang, Indonesia.
4Department of Pharmacology, Faculty of Medicine, University Brawijaya Malang, East Java, Indonesia.
5Laboratory of Pediatris, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia.
*Corresponding Author

Published In:   Volume - 13,      Issue - 7,     Year - 2020

Objective: to examine the role of zinc supplementation on the level of MDA and the number of Mycobacterium tuberculosis colonies in male tuberculosis Wistar rats Methods: This is a pure experimental study (true experimental laboratory) which was carried out in a laboratory in vivo by using a post-test control group design with the subjects were male Wistar (Rattus norvegicus) rats aged 2-3 months, obtained from the PUSVETNA unit (Surabaya). Results: Significant differences were found in levels of MDA and the number of Mycobacterium tuberculosis colonies in male tuberculosis male wistar rats compared with the control group. Conclusion: This study found the ability of Zinc in reducing levels of oxidative stress in patients with tuberculosis and the function of Zinc in modulating the immune system. However in the actual clinical situation it is necessary to consider other comorbid conditions.

Cite this article:
Sukma Sahadewa, Djanggan Sargowo, Muhammad Aris widodo, HMS Chandra Kusuma. The Role of Zinc Supplementation on the level of MDA and the number of Mycobacterium tuberculosis colonies in male tuberculosis Wistar rats. Research J. Pharm. and Tech. 2020; 13(7): 3409-3413. doi: 10.5958/0974-360X.2020.00606.X

Sukma Sahadewa, Djanggan Sargowo, Muhammad Aris widodo, HMS Chandra Kusuma. The Role of Zinc Supplementation on the level of MDA and the number of Mycobacterium tuberculosis colonies in male tuberculosis Wistar rats. Research J. Pharm. and Tech. 2020; 13(7): 3409-3413. doi: 10.5958/0974-360X.2020.00606.X   Available on:

1. Abasaliporkabir R, Moradi H, Zarei S, Asadi S, Salehzadeh A. 2015. Toxicity of nanoparticles on adult male Wistar rats.Jour of Food and Chemical Toxicology.
2. Adrian T.B.R, Montiel J.L, Fernandez G, Valecillo A. (2015). The Role of Cytokines and other Factors Involved in the Mycobacterium Tuberculosis Infection. World Journal of Immunology. Vol 5 (1). Pp 16-50.
3. Adriani M, Wirjatmadi B. 2014. Gizi dan Kesehatan Balita, Peranan Mikro Zinc pada Pertumbuhan Balita. Ed 1. Jakarta : Kencana Prenada Media Group.
4. Beamer G.L, Flaherty D.K., Assogba B.D. (2008). Interleukin-10 Promotes Mycobacterium Tuberculosis Diseases Progression in CBA/J mice. Journal of Immunology.181 (8). 5545-5550.
5. Bharadwaj, S. 2016. Malnutrition : laboratory markers vs nutritional assesment. Gastroenterology report, 4(4), pp. 272-280.
6. Bonaventura P, Benedetti G, Albarède F, Miossec P. 2015. Zinc and its role in immunity and inflammation. Autoimmunity Review; 14:277–285.
7. Bosco, D.M., Mohanasundaram, M.D., Drogemuller, J.C., Lang, J.C., Zalewski, D.P., Coates, T.P. 2010. Zinc and Zinc Transporter Regulation in Pancreatic Islets and the Potential Role of Zinc in Islet Transplantation. Rev Diabet Stud; 7: 263-274.
8. Calvacanti Y.V.N, Brelaz M.C.A, Neves J.K.A, Ferraz J.C. 2012. Role of TNF-α, IFN-ᵞ, and IL-10 in the development of pulmonary tuberculosis. Pulmonary Medicine. Vol 2012. pp 1-10.
9. Chandrasekaran, P., Saravanan, N., Bethunaickan, R. and Tripathy, S., 2017. Malnutrition : modulator of immune responses in tuberculosis. Frontiers in immunology, 8(1316), pp. 1-8.
10. Chen YY, Chang JR, Huang WF, Hsu CH, Cheng HY, Sun JR, Kuo SC, Su IJ. Lin MS, Chen W, Dou HY.(2015). Genetic diversity of the Mycobacterium tuberculosis EastAfrican-Indian family in three tropical Asian countries. Journal of Microbiology, Immunology and Infection; xx:1-7.
11. Dembic Z. (2015). Chapter 4: The Role and Regulation of the Immune Responses. The Cytokines of the Immun System. British Library-Elsevier. Croatia, pp 106-111.
12. Dunn J.D, Alvarez L.A, Zhang X, Soldati T. 2015. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Review article of Redox Biology.
13. Duzguner V, Kaya S. (2007). Effect of Zinc on the Lipid Peroxidation and the Antioxidant Defense Systems of the Alloxan-Induced Diabetic Rabbits.
14. Efimova O, Szankasi P, Kelley TW. 2011. Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLoS One; 6:e16013.
15. Fenelly, K. P. 2012. Variability of infectious aerosols produced during coughing by patients with pulmonary tubeculosis. American journal of respiratory and critical care medicine, 186(5), pp. 450-457.
16. Forbs B, Sahn D, Weissfield AS. 2007. Diagnostic microbiology. St Louis, Missouri. Mosby Elsevier: 843-859.
17. Hojyo, S. and Fukada, T., 2016. Roles of zinc signaling in the immune system. Journal of Immunology Research, 10(1155), pp. 1-22.
18. Hunter, R. L., 2011. Pathology of post primary tuberculosis of the lung : an illustrated critical review. Tuberculosis, 91(6), pp. 497-509.
19. Jasenosky L, Scriba T, Hanekom W, Goldfield A. (2015). T celss and Adaptive Immunity to Mycobacterium tuberculosis in Human. Immunology Reviews. Vol 264(1). Pp 74-87.
20. Jin W, Dong C. (2013). Review: IL-17 Cytokines in Immunity and Inflammation. Journal Emerging Microbes and Infection.Vol 2013 (2). pp 1-5.
21. Jindal, S. K., 2016. Oxidative stress and antioxidant imbalance : respiratory disorders. Dalam: Oxidative stress and antioxidant protection the science of free radical biology and disease. Hoboken: John Wiley and Sons Inc, pp. 307-318.
22. Khan N, Vidayanti A, Lee N.S, Cho M.Y, Eom M, Kim H.Y. (2016). Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection. Frontiers in Microbiology vol 7 pp 1-9.
23. Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S, Atsumi T. (2010). Zinc Suppresses Th17 Development via Inhibiting of STAT3 Activation. Immunology J vol 22 no 5, pp 375-386.
24. Kulchaveya, Ekaterina. (2013). Innate and Acquired Response on Tuberculosis. Review Article. Journal Clinical and Cellular Immunology.S13-005. Pp 1-6.
25. Lamsal H, Gaultam N, Bhatta N, Toora B.D. 2007. Evaluation of lipid peroxidation product, nitrite, and antioxidant level in newly diagnosed and two months follow up patients with pulmonary TB. Asian Journal of Biochemistry.
26. Lyadova I.V, Panteleev A.V. 2015. Th1 and Th17 cells in tuberculosis: Protection, Pathology, and biomarkers. Review article mediators of inflammation. Volume 2015, article ID 854507.
27. Maggini S, Wintergerst E.S, Beveridge S, Hornig D.H. 2007. Selected vitamin and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. British journal of nutrition.98 (1).29-35.
28. Marreiro D. D. N. et al., 2017. Zinc and oxidative stress : current mechanism. Antioxidants, 6(2), p. 24.
29. Mustika A, Rahaju A.S, Indrawati R. 2014. Penurunan kerusakan jaringan paru terinfeksi tuberkulosis oleh ekstrak pegagan melalui peningkatan ekspresi tissue inhibitor of matrix metalloproteinase-1. Jurnal Veteriner 2014 Vol.15 No.4 pp.530-540 ref.39.
30. Neyrolles O, Mintz E, Catty P. 2015. Zinc and copper toxicity in host defense against pathogens: Mycobacterium tuberculosis as a model example of an emerging paradigm. Metal Economy Host-Microbe Interaction; 3:1–4.
31. Overbeck S, Rink L, Haase H. 2008. Modulating the immune response by oral zinc supplementation: a singla approach for multiple diseases. Arch Immunol Ther Exp; 56:15-30.
32. Palanisamy GS, Kirk NM, Ackart DF. 2011. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS One; 6:e26254.
33. Pfaender S , Fohr K , Lutz AK , Putz S , Achberger K , Linta L , etal. 2016. Cellular zinc homeostasis contributes neuronal differentiation in human induced pluripotent stemcells. Neural Plasticity; 2016:3760702.
34. Powers S.K. 2011. Reactive oxygen species: Impact on skeletal muscle. Compr Physiol. 1 (2): 941-969.
35. Pratomo IP, Burhan E, Tambunan V. 2012. Malnutrisi dan Tuberkulosis. J Indon Med Assoc vol 62, Nomor: 6.
36. Radak Z. 2013. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent. Antioxidants and Redox signaling volume 18, Number 10.
37. Redford P.S, Murray P.J, O’Garra A. 2011. The Role of IL-10 in immune Regulation during Mycobacterium tuberculosis infection. Mucosal Immunology: 4 (3). 261-270.
38. Schneider J.M, Fujii M.L, Lamp C.L, Lönnerdal B, Zidenberg-Cherr S. 2007. The prevalence of low serum zinc and copper levels and dietary habits associated with serum zinc and copper in 12-to 36-month-old children from low-income family at risk for iron deficiency. Journal of American Dietetic Associations; 107:1924–1929.
39. Schwander S, Dheda K. 2011. Human lung immunity against Mycobacterium tuberculosis.American Journal Respiratory.Vol 183. Pp 696-702.
40. Sia K.J, Georgiva M, Rengarajan J. (2015). Review Article: Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Immune Cells. Journal of Immunology Research Vol 2015 pp 1-2.
41. Stensland I , Kim J.C , Bowring B , Collins A.M , Mansfield J.P , Pluske J.R. A com-parison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex, orzincoxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimentally infected with enterotoxigenic E. coli. Animals 2015;5:1147–68.
42. Sterling T.R. 2015. Treatment of pulmonary tubrerculosis in HIV-uninfected patients. Uptodate Wolters Kluwer. Pp 1-23.
43. Stokowa-Soltys K, Barbosa N.A, Kasprowicz A, Wieczorek R, Gaggelli N, Gaggelli E. 2016. Studies of viomycin, an anti tuberculosis antibiotic: copper(ii) coordination, DNA degradation and the impacton delta ribozyme cleavage activity. Dalton Transaction; 45:8645–58.
44. Su W.L, Perng W.C, Huang C.H, Yang C.y. 2010. Assosiation of reduced tumor necroting factor alpha, gamma interferon, and interleukin 1β but increased IL-10 expression with improved chest radiography in patients with pulmonary tuberculosis.Clinical and Vaccine Immunology.17(2).223-231.
45. Sulis, G., Roggi, A., Matteelli, A. and Raviglione, M. C., 2014. Tuberculosis : Epidemiology and Control. Mediterraenian Journal of Hematology and Infectious Diseases.
46. Turner, R. D. and Bothamley, G. H., 2014. Cough and the transmission of tuberculosis. The journal of infectious diseases, 21(1), pp. 1367-1372.
47. Zhang Z W, Wang Q H, Zhang J.L, Li S, Wang X.L, Xu S.W. 2012. Effects ofoxidative stress on immuno-suppression induced by selenium deficiency in chickens. Biological Trace Element Research; 149:352-361

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available