Author(s): Samar Ali, AL Salameh, Mustafa Alammory, Omar Hamadah

Email(s): alisaly474@gmail.com

DOI: 10.5958/0974-360X.2020.00587.9   

Address: Dr. Samar Ali1, AL Salameh, Mustafa Alammory2, Omar Hamadah3
1Department of Basic Science, Faculty of Dentistry, Damascus University, Damascus, Syria.
2Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
3Department of Oral Pathology, Faculty of Dentistry, Damascus University, Damascus, Syria.
*Corresponding Author

Published In:   Volume - 13,      Issue - 7,     Year - 2020


ABSTRACT:
Purpose: This study examined carbon dioxide laser (CO2; 10,600nm), diodelaser (810nm), and erbium (Er): yttrium-aluminum-garnet (YAG; 2,940nm) laser applications on Streptococcus mutans contaminated sandblasted surface titanium implants and performed a comparative evaluation of the bactericidal effects. Materials and Methods: This study was carried out in 4 groups: Er: YAG laser in short pulse (SP) emission mode, diode laser with a 320-nm fiber optic and CO2 laser. After laser irradiation, dilutions were spread on sheep blood agar plates and, after an incubation period of 24 hours, colony-forming units were counted and compared with the control group, and the bactericidal activity was assessed in relation to the colony counts. Results: The CO2 laser reduce bacterial count 5 logs at 4 W, the continuous-wave diode laser decrease the count of bacteria 4.66 logs at 1 W, and The Er: YAG laser reduce bacterial count 4.5 logs at 90 mJ and 10 Hz. Conclusions: The results of this study show that effective elimination of surface bacteria on titanium surfaces could be accomplished in vitro using a CO2, diode, or Er: YAG laser as longas appropriate parameters are used.


Cite this article:
Samar Ali, AL Salameh, Mustafa Alammory, Omar Hamadah. Comparative Effect of laser treatment on Streptococcus mutans Biofilm adhered to Dental implant surface. Research J. Pharm. and Tech. 2020; 13(7): 3311-3316. doi: 10.5958/0974-360X.2020.00587.9

Cite(Electronic):
Samar Ali, AL Salameh, Mustafa Alammory, Omar Hamadah. Comparative Effect of laser treatment on Streptococcus mutans Biofilm adhered to Dental implant surface. Research J. Pharm. and Tech. 2020; 13(7): 3311-3316. doi: 10.5958/0974-360X.2020.00587.9   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-7-47


REFERENCES:
1. Vouros, I.D., et al., Systematic assessment of clinical outcomes in bone-level and tissue-level endosseous dental implants. International Journal of Oral and Maxillofacial Implants, 2012. 27(6).
2. Jung, R.E., et al., A systematic review of the 5‐year survival and complication rates of implant‐supported single crowns. Clinical Oral Implants Research, 2008. 19(2): p. 119-130.
3. Mombelli, A., Microbiology and antimicrobial therapy of peri‐implantitis. Periodontology 2000, 2002. 28(1): p. 177-189.
4. Elter, C., et al., Supra-and subgingival biofilm formation on implant abutments with different surface characteristics. International Journal of Oral and Maxillofacial Implants, 2008. 23 (2).
5. Koldsland, O.C., A.A. Scheie, and A.M. Aass, Prevalence of implant loss and the influence of associated factors. Journal of Periodontology, 2009. 80(7): p. 1069-1075.
6. Fürst, M.M., et al., Bacterial colonization immediately after installation on oral titanium implants. Clinical Oral Implants Research, 2007. 18(4): p. 501-508.
7. Quirynen, M., et al., Dynamics of initial subgingival colonization of ‘pristine’peri‐implant pockets. Clinical Oral Implants Research, 2006. 17(1): p. 25-37.
8. Gerber, J., et al., Comparison of bacterial plaque samples from titanium implant and tooth surfaces by different methods. Clinical Oral Implants Research, 2006. 17(1): p. 1-7.
9. Dhir, S., Biofilm and dental implant: The microbial link. Journal of Indian Society of Periodontology, 2013. 17(1): p. 5.
10. Marsh, P.D., Dental plaque: biological significance of a biofilm and community life‐style. Journal of Clinical Periodontology, 2005. 32: p. 7-15.
11. Berechet, C.A., et al., Peri-implantitis versus periodontitis-similarities and differences. literature review. Romanian Journal of Stomatology, 2013. 59(1).
12. Renvert, S., A.M. Roos‐Jansåker, and N. Claffey, Non‐surgical treatment of peri‐implant mucositis and peri‐implantitis: a literature review. Journal of Clinical Periodontology, 2008. 35: p. 305-315.
13. Kreisler, M., et al., Effect of Nd: YAG, Ho: YAG, Er: YAG, CO 2, and GaAlAs Laser Irradiation on Surface Properties of Endosseous Dental Implants. International Journal of Oral and Maxillofacial Implants, 2002. 17(2).
14. Deppe, H. and H.-H. Horch, Laser applications in oral surgery and implant dentistry. Lasers in Medical Science, 2007. 22(4): p. 217-221.
15. Kreisler, M., et al., Bactericidal effect of the Er: YAG laser on dental implant surfaces: an in vitro study. Journal of Periodontology, 2002. 73(11): p. 1292-1298.
16. Prates, R.A., et al., Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. Journal of Photochemistry and Photobiology B: Biology, 2007. 86(1): p. 70-76.
17. Rosen, P., et al., Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. Journal of Periodontology, 2013. 84(4): p. 436-443.
18. Figuero, E., et al., Management of peri‐implant mucositis and peri‐implantitis. Periodontology 2000, 2014. 66(1): p. 255-273.
19. Algraffee, H., F. Borumandi, and L. Cascarini, Peri-implantitis. British Journal of Oral and Maxillofacial Surgery, 2012. 50(8): p. 689-694.
20. Jayachandran Prathapachandran, N.S., Management of peri-implantitis. Dental Research Journal, 2012. 9(5): p. 516.
21. Roncati, M., A. Lucchese, and F. Carinci, Non-surgical treatment of peri-implantitis with the adjunctive use of an 810-nm diode laser. Journal of Indian Society of Periodontology, 2013. 17(6): p. 812.
22. Stübinger, S., et al., Effect of Er: YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2008. 40(3): p. 223-228.
23. Tosun, E., et al., Comparative evaluation of antimicrobial effects of Er: YAG, diode, and CO2 lasers on titanium discs: an experimental study. Journal of Oral and Maxillofacial Surgery, 2012. 70(5): p. 1064-1069.
24. Hauser‐Gerspach, I., S. Stübinger, and J. Meyer, Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clinical oral Implants Research, 2010. 21(3): p. 277-283.
25. Dederich, D.N., et al., Comparative bactericidal exposures for selected oral bacteria using carbon dioxide laser radiation. Lasers in Surgery and Medicine, 1990. 10(6): p. 591-594.
26. Kato, T., H. Kusakari, and E. Hoshino, Bactericidal efficacy of carbon dioxide laser against bacteria‐contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 1998. 23(5): p. 299-309.
27. Keller, O.R., et al., Laser-induced temperature changes in dentine. Journal of Clinical Laser Medicine and Surgery, 2003. 21(6): p. 375-381.
28. Krause, L.S., et al., Laser irradiation of bone. I. An in vitro study concerning the effects of the CO2 laser on oral mucosa and subjacent bone. Journal of Periodontology, 1997. 68(9): p. 872-880.
29. Malmström, H., et al., Effect of CO2 laser on pulpal temperature and surface morphology: an in vitro study. Journal of Dentistry, 2001. 29(8): p. 521-529.
30. Heitz‐Mayfield, L.J. and N.P. Lang, Comparative biology of chronic and aggressive periodontitis vs. peri‐implantitis. Periodontology 2000, 2010. 53(1): p. 167-181.
31. Cobb, C.M., S.B. Low, and D.J. Coluzzi, Lasers and the treatment of chronic periodontitis. Dental Clinics, 2010. 54(1): p. 35-53.
32. Mailoa, J., et al., Clinical outcomes of using lasers for peri‐implantitis surface detoxification: a systematic review and meta‐analysis. Journal of Periodontology, 2014. 85(9): p. 1194-1202.
33. Chen, C.-J., S.-J. Ding, and C.-C. Chen, Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomedicine and Laser Surgery, 2016. 34(9): p. 379-388.
34. Schwarz, F., et al., Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clinical Oral Investigations, 2005. 9(2): p. 111-117.
35. Birang, E., et al., Evaluation of effectiveness of photodynamic therapy with low-level diode laser in nonsurgical treatment of peri-implantitis. Journal of Lasers in Medical Sciences, 2017. 8(3): p. 136.
36. Kreisler, M., et al., Antimicrobial efficacy of semiconductor laser irradiation on implant surfaces. International Journal of Oral and Maxillofacial Implants, 2003. 18(5).
37. Sennhenn-Kirchner, S., et al., Decontamination efficacy of erbium: yttrium–aluminium–garnet and diode laser light on oral Candida albicans isolates of a 5-day in vitro biofilm model. Lasers in Medical Science, 2009. 24(3): p. 313.
38. Sennhenn‐Kirchner, S., et al., Decontamination of rough titanium surfaces with diode lasers: microbiological findings on in vivo grown biofilms. Clinical Oral Implants Research, 2007. 18(1): p. 126-132.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available