Author(s): Rajendra Kumar Jangde, Rabsanjani, Sulekha Khute

Email(s): rjangdepy@gmail.com

DOI: 10.5958/0974-360X.2020.00576.4   

Address: Rajendra Kumar Jangde*, Rabsanjani, Sulekha Khute
University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G.) 492010.
*Corresponding Author

Published In:   Volume - 13,      Issue - 7,     Year - 2020


ABSTRACT:
Background and Objectives: To develop lipid polymer hybrid nanoparticles by optimization techniques that is pioneering drug delivery systems of ciprofloxacin for using topical infection. Material and Method: The formulation mainly prepared by a biodegradable eco-friendly and bioacceptable polymer of chitosan, lipid soya lecithin and can incorporate in the gel using carbopol solvent evaporation method. The experimental factorial design is 3D level of quadratic model is used to optimize the formulation at different ratio. Results: The determination of percentage drug entrapment efficiency, particle-size diameter and % loading capacity was studied. The optimized LPHNPs have particle size of 204.47?nm, loading efficiency of 74.49% and zeta potential of -4.56 mV was found. Ciprofloxacin released about 80% for 24?hours in vitro. Conclusion: In current research, it can be concluded that the relative bioavailability of the drug in LPHNPs was significantly increased and used for the treatment of topical skin infection.


Cite this article:
Rajendra Kumar Jangde, Rabsanjani, Sulekha Khute. Design and Development of Ciprofloxacin Lipid Polymer Hybrid Nanoparticle by Response Surface Methodology. Research J. Pharm. and Tech. 2020; 13(7): 3249-3256. doi: 10.5958/0974-360X.2020.00576.4

Cite(Electronic):
Rajendra Kumar Jangde, Rabsanjani, Sulekha Khute. Design and Development of Ciprofloxacin Lipid Polymer Hybrid Nanoparticle by Response Surface Methodology. Research J. Pharm. and Tech. 2020; 13(7): 3249-3256. doi: 10.5958/0974-360X.2020.00576.4   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-7-36


REFERENCES: 
1. Wu, X.Y., 2016. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Del., 13: 609-612. http://doi.org/10.1517/17425247.2016.1165662
2. Gao, H., Schwarz, J. and Weisspapir, M., Gao Hai Y, 2008. Hybrid lipid-polymer nanoparticulate delivery composition. U.S. Patent Application 11/848,484. https://patents.google.com/patent/US20080102127A1/en
3. Basheer, M. and Udupa, N., 1999. Formulation and evaluation of topical drug delivery systems containing ciprofloxacin and tinidazole. Indian Journal of Pharmaceutical Sciences, 61(3), p.149. https://www.ijpsonline.com/abstract/formulation-and-evaluation-of-topical-drug-delivery-systems-containing-ciprofloxacin-and-tinidazole-1381.pdf
4. Yasir, M. and Sara, U.V.S., 2013. Preparation and optimization of haloperidol loaded solid lipid nanoparticles by Box–Behnken design. Journal of pharmacy research, 7(6), pp:551-558. http://doi.org/10.1016/j.jopr.2013.05.022
5. Al-Khashab, Y.E., Hummadi, Y.M.A.M., Hamadi, S.A. and Al-Waiz, M.M., 2010. Formulation and evaluation of ciprofloxacin as a topical gel. Al-Mustansiriyah Journal for Pharmaceutical Sciences, 8(2), pp:80-95.
http://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/341.  
6. Kumar, K.K., Sasikanth, K., Sabareesh, M. and Dorababu, N., 2011. Formulation and evaluation of diacerein cream. Asian J Pharm Clin Res, 4(2), pp:93-98. https://innovareacademics.in/journal/ajpcr/Vol4Issue2/295.pdf
7. Chalikwar, S.S., Mene, B.S., Pardeshi, C.V., Belgamwar, V.S. and Surana, S.J., 2013. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization. Polymer-Plastics Technology and Engineering, 52(4), pp:368-380. http://doi.org/10.1080/03602559.2012.751999
8. Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E. and Fernandes, J.C., 2004. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. European journal of pharmaceutics and biopharmaceutics, 57(1), pp:1-8. http://doi: 10.1016/s0939-6411(03)00155-3
9. Tong, H., Shi, Q., Fernandes, J.C., Liu, L.I., Dai, K. and Zhang, X., 2009. Progress and prospects of chitosan and its derivatives as non-viral gene vectors in gene therapy. Current gene therapy, 9(6), p:495-502.  http://doi: 10.2174/156652309790031111
10. Köping‐Höggård, M., Mel'nikova, Y.S., Vårum, K.M., Lindman, B. and Artursson, P., 2003. Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications, 5(2), pp:130-141.  http://doi.org/10.1002/jgm.327
11. Gurny, R., Peppas, N.A., Harrington, D.D. and Banker, G.S., 1981. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug development and industrial pharmacy, 7(1), pp: 1-25. http://doi: 10.3109/03639048109055684
12. Bodmeier, R. and Huagang, C., 1990. Indomethacin polymeric nanosuspensions prepared by microfujidization. Journal of controlled release, 12(3), pp: 223-233. http://doi.org/10.1016/0168-3659(90)90103-Z
13. Sanchez, A., Vila-Jato, J. and Alonso, M.J., 1993. Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporine A. International journal of pharmaceutics, 99(2-3), pp: 263-273. http://doi.org/10.1016/0378-5173(93)90369-Q
14. Plard, J.P. and Bazile, D., 1999. Comparison of the safety profiles of PLA50 and Me. PEG-PLA50 nanoparticles after single dose intravenous administration to rat. Colloids and surfaces B. Biointerfaces, 16(1-4), pp: 173-183. http://doi.org/10.1016/S0927-7765(99)00068-5
15. Mathiowitz E, Mathiowitz E., 1999. Encyclopedia of controlled drug delivery. New York.,  pp: 641-664. http://doi.org/10.1002/pi.836
16. Kwon, S.S., Nam, Y.S., Lee, J.S., Ku, B.S., Han, S.H., Lee, J.Y. and Chang, I.S., 2002. Preparation and characterization of coenzyme Q10-loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 210(1), pp: 95-104. http://doi: 10.1016/S0927-7757(02)00212-1
17. Mishra, D.K., Shandilya, R. and Mishra, P.K., 2018. Lipid based nanocarriers: a translational perspective. Nanomedicine. Nanotechnology, Biology and Medicine, 14(7), pp: 2023-2050. http://doi: 10.1016/j.nano.2018.05.021
18. Julienne, M.C., Alonso, M.J., Gomez Amoza, J.L. and Benoit, J.P., 1992. Preparation of poly (D, L-lactide/glycolide) nanoparticles of controlled particle size distribution: application of experimental designs. Drug development and industrial pharmacy, 18(10), pp: 1063-1077. http://doi.org/10.3109/03639049209069315
19. Dave, V., Yadav, R.B., Kushwaha, K., Yadav, S., Sharma, S. and Agrawal, U., 2017. Lipid-polymer hybrid nanoparticles. Development and statistical optimization of norfloxacin for topical drug delivery system. Bioactive materials, 2(4), pp: 269-280. http://doi: 10.1016/j.bioactmat.2017.07.002
20. Cheow, W.S. and Hadinoto, K., 2011. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids and surfaces B. Biointerfaces, 85(2), pp: 214-220. http:// doi: 10.1016/j.colsurfb.2011.02.033
21. Verrecchia, T., Huve, P., Bazile, D., Veillard, M., Spenlehauer, G. and Couvreur, P., 1993. Adsorption/desorption of human serum albumin at the surface of poly (lactic acid) nanoparticles prepared by a solvent evaporation process. Journal of biomedical materials research, 27(8), pp: 1019-1028. http://doi.org/10.1002/jbm.820270807
22. Rompicharla, S.V.K., Bhatt, H., Shah, A., Komanduri, N., Vijayasarathy, D., Ghosh, B. and Biswas, S., 2017. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chemistry and physics of lipids, 208, pp: 10-18. http://doi: 10.1016/j.chemphyslip.2017.08.009
23. Pradhan, M., Singh, D. and Singh, M.R., 2017. Fabrication, optimization and characterization of Triamcinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Application of Box Behnken design, in vitro and ex vivo studies. Journal of Drug Delivery Science and Technology, 41, pp: 325-333. http://doi: 10.3390/molecules23040982
24. Sahu, A.K., Kumar, T. and Jain, V., 2014. Formulation optimization of erythromycin solid lipid nanocarrier using response surface methodology. BioMed research international, 2014. https://doi.org/10.1155/2014/689391
25. Venugopal, V., Kumar, K.J., Muralidharan, S., Parasuraman, S., Raj, P.V. and Kumar, K.V., 2016. Optimization and in-vivo evaluation of isradipine nanoparticles using Box-Behnken design surface response methodology. OpenNano, 1, pp.1-15. https://doi.org/10.1016/j.onano.2016.03.002
26. Rademeyer, P., Carugo, D., Lee, J.Y. and Stride, E., 2015. Microfluidic system for high throughput characterisation of echogenic particles. Lab on a Chip, 15(2), pp: 417-428. http://doi: 10.1039/C4LC01206B
27. Jangde, R. and Singh, D., 2014. Compatibility studies of quercetin with pharmaceutical excipients used in the development of novel formulation. Research Journal of Pharmacy and Technology, 7(10), pp: 1101-1105. http://rjptonline.org/AbstractView.aspx?PID=2014-7-10-1
28. Jangde, R., Srivastava, S., Singh, M.R. and Singh, D., 2018. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. International journal of biological macromolecules, 115, pp: 1211-1217.  http://doi: 10.1016/j.ijbiomac.2018.05.010
29. Bektas, N., Şenel, B., Yenilmez, E., Özatik, O. and Arslan, R., 2020. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharmaceutical Journal, 28(1), pp.87-94. https://doi.org/10.1016/j.jsps.2019.11.008
30. Omar, M.M., Hasan, O.A. and El Sisi, A.M., 2019. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers a promising approach for enhancement of skin permeation. International journal of nanomedicine, 14, p:1551. https://doi.org/10.2147/IJN.S201356
31. Kumar, R., Nagarwal, R.C., Dhanawat, M. and Pandit, J.K., 2011. In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles. Journal of biomedical nanotechnology, 7(3), pp: 325-333. http://doi: 10.1166/jbn.2011.1290
32. Muthu, M.S. and Singh, S., 2009. Poly (D, L-lactide) nanosuspensions of risperidone for parenteral delivery: formulation and in-vitro evaluation. Current drug delivery, 6(1), pp: 62-68. http://doi:10.2174/156720109787048302
33. Mukhopadhyay, S., Madhav, N.S. and Upadhyaya, K., 2016. Formulation and evaluation of bionanoparticulated drug delivery of Rivastigmine. World Journal of Pharmaceutical Sciences, 4, p: 5.  
https://pdfs.semanticscholar.org/5135/64cb0d25e7b1ac643f780b4148014e9d4dad.pdf
34. Devi, N. and Dutta, J., 2017. Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. International journal of biological macromolecules, 104, pp: 1897-1904. http://doi: 10.1016/j.ijbiomac.2017.02.080
35. Pradhan, M., Singh, D. and Singh, M.R., 2015. Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chemistry and physics of lipids, 186, pp: 9-16. http://doi: 10.1016/j.chemphyslip.2014.11.004
36. Deshkar, S.S., Bhalerao, S.G., Jadhav, M.S. and Shirolkar, S.V., 2018. Formulation and    Optimization of Topical Solid Lipid Nanoparticles Based Gel of Dapsone Using Design of Experiment. Pharmaceutical nanotechnology, 6(4), pp.264-275.
http://doi: 10.2174/2211738506666181105141522.
37. Jangde, R. and Singh, D., 2016. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artificial cells, nanomedicine, and biotechnology, 44(2), pp: 635-641. http://doi: 10.3109/21691401.2014.975238
38. Rajendra J., 2016. Understanding the Role of Response Surface Methodology in Development of Quercetin Loaded Phytocomplex for Wound Healing. Asian Journal of Pharmaceutics, 21(04),10. http://dx.doi.org/10.22377/ajp.v 10i04.894

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available