Author(s): Sara H. Mohamed, Mary S. Khalil, Mona I. Mabrouk, Mahmoud S.M. Mohamed

Email(s): msaleh@sci.cu.edu.eg

DOI: 10.5958/0974-360X.2020.00542.9   

Address: Sara H. Mohamed1, Mary S. Khalil2, Mona I. Mabrouk1, Mahmoud S.M. Mohamed2*
1Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt.
2Department of Botany and Microbiology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
*Corresponding Author

Published In:   Volume - 13,      Issue - 7,     Year - 2020


ABSTRACT:
Biofilm formation is closely related to the pathogenic processes of Klebsiella pneumoniae, which frequently causes infections that are difficult to treat with antimicrobial agents. The aim of this study was to evaluate biofilm formation ability among clinical Klebsiella pneumoniae isolates from Egypt, and to study its antibiotic resistance, extended spectrum ß-lactamases (ESBLs) production and fimbrial genes occurrence. A total of 90 clinical Klebsiella pneumoniae isolates were collected from different sources. Antimicrobial susceptibility, phenotypic and genotypic detection of ESBLs and biofilm assay were determined. SEM was applied to confirm K. pneumoniae biofilm formation. PCR assay was performed to investigate the distribution of fimbrial, as well as ß-lactamases genes which were further confirmed by DNA sequencing. The results reveal high prevalence of multidrug resistance (86.66%) and biofilm formation ability (51%) among Klebsiella pneumoniae isolates. Furthermore, ESBL producing Klebsiella pneumoniae isolates had a higher ability to form a biofilm compared to non-ESBL forming ones. The occurrence of blaCTX-M and blaTEM among ESBLs-biofilm producers demonstrated high predominance of isolates harboring blaCTX-M. The distribution of fimbrial (mrkD and fimH) among biofilm former isolates were 100% and 86.95% respectively. The present study revealed high prevalence of multi-drug resistance (MDR) among Klebsiella pneumoniae in Egypt, in addition to biofilm formation, and also conclude that ESBL producing Klebsiella pneumoniae isolates had a higher ability to form a biofilm in comparison with non-ESBL forming ones. In addition, our study strongly supports that type 3 fimbriae strongly promote biofilm formation in Klebsiella pneumoniae.


Cite this article:
Sara H. Mohamed, Mary S. Khalil, Mona I. Mabrouk, Mahmoud S.M. Mohamed. Prevalence of antibiotic resistance and biofilm formation in Klebsiella pneumoniae carrying fimbrial genes in Egypt. Research J. Pharm. and Tech. 2020; 13(7): 3051-3058. doi: 10.5958/0974-360X.2020.00542.9


REFERENCES: 
1. Aljanaby AAJ, Alhasani HAA. Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. African J Microbiol Res 2016;10:829–43. doi:10.5897/AJMR2016.8051.
2. Mohamed SH, Khalil MS, Azmy M. In vitro Efficiency of Ampicillin , Thymol and Their Combinations against Virulence Strains of Klebsiella pneumoniae. Int J Pharm Res 2019;11:315–21.
3. Abdelmegeed ES, Barwa R, Abd KH, Galil E. Comparative study on prevalence and association of some virulence factors with extended spectrum beta- lactamases and AmpC producing Escherichia coli. African J Microbiol Res 2015;9:1165–74. doi:10.5897/AJMR2015.7463.
4. Rana S, Sirwar SB, Vijayaraghavan. Prevalence and Antibiogram of Extended Spectrum β-Lactamase Producing Klebsiella pneumoniae and Proteus mirabilis in UTI. Res J Pharm Tech 2015;8:1465–8.
5. Taha S, Youssef N, Elkazaz A, Ramadan H. Detection of extended-spectrum beta-lactamases ( ESBLs ) in clinical isolates of Klebsiella pneumoniae using the ESBL NDP test and flow cytometric assay in comparison to the standard disc diffusion. African J Microbiol Res 2015;9:1947–53. doi:10.5897/AJMR2015.7691.
6. Banu S, Gopinath P. Detection of blactx-m Gene for Esbl Resistance among Clinical Isolates of Klebsiella pneumoniae. Res J Pharm Tech 2016;9:1615–7.
7. Chhibber S, Nag D, Bansal S. Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 2013;13:174. doi:10.1186/1471-2180-13-174.
8. Barsoumian AE, Mende K, Sanchez CJ, Beckius ML, Wenke JC, Murray CK, et al. Clinical infectious outcomes associated with biofilm-related bacterial infections: a retrospective chart review. BMC Infect Dis 2015; 15:223. doi:10.1186/s12879-015-0972-2.
9. Mohamed SH, Mohamed MSM, Khalil MS, Azmy M, Mabrouk MI. Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. J Appl Microbiol 2018; 125:0–3. doi:10.1111/jam.13755.
10. Chaturvedi R, Chandra P, Mittal V. Biofilm Formation by Acinetobacter Spp. Res J Pharm Tech 2019;12:3737–42.
11. Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 2016; 9:2–7. doi:10.5812/jjm.30682.
12. Burmølle M, Bahl MI, Jensen LB, Sørensen SJ, Hansen LH. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 2008; 154:187–95. doi:10.1099/mic.0.2007/010454-0.
13. Bunyan IA, Alkhuzaee QAJ. Detection of Curlibiogenesis genes among Enterobacter cloacae isolates and their role in biofilm formation in Al-Hilla City, Iraq. Res J Pharm Tech 2017; 10:3294–300.
14. The Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing CLSI supplement M100-S26. 2016.
15. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. vol. 32. 2012. doi:10.1038/nprot.2008.226.
16. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304. doi:10.1046/j.1365-2958.1998.01062. x.
17. Mohamed M, Mostafa H, Mohamed S, El-Moez SA, Kamel Z. Combination of Silver Nanoparticles and Vancomycin to Overcome Antibiotic Resistance in Planktonic/Biofilm Cell from Clinical and Animal Source. Microb DRUG Resist. 2020. doi:10.1089/mdr.2020.0089.
18. Mohamed SH, Mohamed MSM, Khalil MS, Mohamed WS, Mabrouk MI. Antibiofilm activity of papain enzyme against pathogenic Klebsiella pneumoniae. J Appl Pharm Sci 2018; 8:163–8. doi:10.7324/JAPS.2018.8621.
19. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol 2013; 61:209–16. doi: 10.1016/j.patbio.2012.10.004.
20. Abdel-Moaty MM, Mohamed WS, Abdel-All SM, El-Hendawy HH. Prevalence and molecular epidemiology of extended spectrum beta-lactamase producing Escherichia coli from hospital and community settings in Egypt. J Appl Pharm Sci 2016; 6:042–7. doi:10.7324/JAPS.2016.600107.
21. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–81. doi:10.1111/j.1469-0691.2011.03570. x.
22. Abbas HA, Kadry AA, Shaker GH, Goda RM. Resistance of Escherichia coli and Klebsiella pneumoniae isolated from different Sources to β-lactam Antibiotics. Res J Pharm Tech 2017; 10:589–91.
23. Mohamed MSM, Abdallah AA, Mahran MH, Shalaby M. Potential Alternative Treatment of Ocular Bacterial Infections by Oil Derived from Syzygium aromaticum Flower (Clove). Curr Eye Res 2018; 43:873–81. doi:10.1080/02713683.2018.1461907.
24. Tayal R, Baveja S, De A. Analysis of biofilm formation and antibiotic susceptibility pattern of uropathogens in patients admitted in a tertiary care hospital in India. Int J Heal Allied Sci 2015; 4:247. doi:10.4103/2278-344X.167648.
25. Cruz-Córdova A, Esteban-kenel V, Espinosa-mazariego K, Ochoa SA, Espinosa M, Garza D, et al. Pathogenic determinants of clinical Klebsiella pneumoniae strains associated with their persistence in the hospital environment. Bol Med Hosp Infant Mex 2014; 71:15–24.
26. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility pattern and ESBL prevalence in Klebsiella pneumoniae from urinary tract infections in the North-West of Pakistan. African J Microbiol Res 2009; 3:676–80. doi:10.4314/ajb.v8i16.62081.
27. Sharma N, Gupta AK, Walia G, Bakhshi R. A retrospective study of the changing trends of antimicrobial resistance of Klebsiella pneumoniae isolated from urine samples over last 3 years (2012-2014). J Nat Sci Biol Med 2016; 7:39–42. doi:10.4103/0976-9668.175060.
28. Sreeja M., Gowrishankar N., Adisha S, Divya KC. Antibiotic Resistance. Res J Pharm Tech 2017; 10:1886–1890.
29. Anima N, S D, K. NB. Antibiotic Resistance Pattern Exhibited by ESBL (Extended Spectrum β-Lactamases) in Multidrug Resistant Strains, Escherichia coli. Res J Pharm Tech 2017; 10:3705–8.
30. Medić D, Gusman V, Mihajlović-Ukropina M, Jelesić Z, Milosavljević B. Bloodstream infections in children caused by extended spectrum beta-lactamase-producing Klebsiella pneumoniae. Arch Biol Sci 2012; 64:1339–48. doi:10.2298/ABS1204339M.
31. Gharout-Sait A, Touati A, Benallaoua S, Guillard T, Brasme L, Madoux J, et al. CTX-M from community-acquired urinary tract infections in Algeria. African J Microbiol Res 2012; 6:5306–13. doi:10.5897/AJMR11.1478.
32. El Bouamri MC, Arsalane L, El Kamouni Y, Zouhair S. Antimicrobial susceptibility of urinary Klebsiella pneumoniae and the emergence of carbapenem-resistant strains: A retrospective study from a university hospital in Morocco, North Africa. African J Urol 2015; 21:36–40. doi:10.1016/j. afju.2014.10.004.
33. Oduro-Mensah D, Obeng-Nkrumah N, Bonney EY, Oduro-Mensah E, Twum-Danso K, Osei YD, et al. Genetic characterization of TEM-type ESBL-associated antibacterial resistance in Enterobacteriaceae in a tertiary hospital in Ghana. Ann Clin Microbiol Antimicrob 2016;15:29. doi:10.1186/s12941-016-0144-2.
34. Lathamani K, Kotigadde S. Biofilm Formation and its Correlation with ESBL Production in Klebsiella pneumoniae Isolated from a Tertiary Care Hospital 2016;5:2014–7.
35. Ansari MA, Khan HM, Khan AA, Cameotra SS, Pal R. Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl Nanosci 2013; 4:859–68. doi:10.1007/s13204-013-0266-1.
36. Mohamed SH, Salem D, Azmy M, Fam NS. Antibacterial and antibiofilm activity of cinnamaldehyde against carbapenem-resistant Acinetobacter baumannii in Egypt : In vitro study. J Appl Pharm Sci 2018; 8:151–6. doi:10.7324/JAPS.2018.81121.
37. Abbas HA, Serry FM, EL-Masry EM. Comparative assessment of biofilm formation of Pseudomonas aeruginosa isolates by crystal violet assay and viable count assay. Res J Sci Tech 2012; 4:181–4.
38. Elgaied L, Salem R, Elmenofy W. Expression of tomato yellow leaf curl virus coat protein using baculovirus expression system and evaluation of its utility as a viral antigen. 3 Biotech 2017:269. doi:10.1007/s13205-017-0893-4.
39. Struve C, Bojer M, Krogfelt KA. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 2008; 76:4055–65. doi:10.1128/IAI.00494-08.
40. Schroll C, Barken KB, Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 2010; 10:179. doi:10.1186/1471-2180-10-179.
41. Murphy CN, Mortensen MS, Krogfelt KA, Clegg S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 2013; 81:3009–17. doi:10.1128/IAI.00348-13.
42. Ranjbar R, Memariani H, Sorouri R. Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strains isolated from children with urinary tract infections. Arch Pediatr Infect Dis 2017;5. doi:10.5812/pedinfect.39000.
43. Prabhakaran A, Kumaravel P, Priya J, Melchias G, Edward A, Sridevi G. Investigation of antibacterial and haemolytic activity of Russell’s viper and Echis carinatus venom. Asian J Pharm Ana 2014; 4:01–4.
44. Narkar P, Raut S V. Study of Antibiofilm Activity of Methanolic Extract and Oil of Cymbopogon citratus and its other Applications. Res J Pharmacogn Phytochem 2014; 6:160–9.
45. Abbas HA. Antibacterial, Anti-swarming and Antibiofilm Activities of Local Egyptian Clover Honey Against Proteus Mirabilis Isolated from Diabetic Foot Infection. Asian J Pharm Res 2013; 3:114–7.

Recomonded Articles:

Author(s): Hisham A. Abbas, Ashraf A. Kadry, Ghada H. Shaker, Reham M. Goda

DOI: 10.5958/0974-360X.2017.00116.0         Access: Open Access Read More

Author(s): Hisham A. Abbas, Mona A. El-Sayed, Laila M. Al-Kadi, Amany I. Gad

DOI: Not Available         Access: Open Access Read More

Author(s): Chinedu Fredrick Anowi, Nnabuife Chinedu Cardinal, A.F. Onyegbule, L.N. Anowi

DOI: Not Available         Access: Open Access Read More

Author(s): Saurabh Bharadwaj, U.V.S. Teotia, Kishan Singh, Rajib Sharma, Yogendra Singh

DOI: Not Available         Access: Open Access Read More

Author(s): Samrithi Yuvaraj, Gheena. S

DOI: 10.5958/0974-360X.2015.00200.0         Access: Open Access Read More

Author(s): Hisham A. Abbas, Fathy M. Serry, Eman M. EL-Masry

DOI: Not Available         Access: Open Access Read More

Author(s): Roushan Mubarak, Shaden Haddad, Outhman Hamdan

DOI: 10.5958/0974-360X.2016.00022.6         Access: Open Access Read More

Author(s): Nazia Zareen. I, Gopinath Prakasam

DOI: 10.5958/0974-360X.2016.00368.1         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags