ABSTRACT:
This study reports green synthesis of AgCuO bimetallic nanomaterial from leaf extract of Cordia sebestena and its industrial application as a methylene blue degrading agent. Phytochemical analysis showed that C. sebestena leaves are rich in flavonoids, tannins, saponin, phenols and alkaloids. Aqueous extract of C.sebestena leaves was used as catalyst (1%) and polyethyleneglycol (PEG) was used as capping agent (0.1%) in a reaction mixture containing 1M AgNO3 and 1M CuSO4. The reaction was repeated with AgNO3 and CuSO4 individually for comparison. The synthesized nanomaterial were characterized by SEM, EDX and DLS analysis. Synthesized AgCuO nanomaterial demonstrated sharp needle like clusters ranging 671.6 ± 37.3nm in size. Individual Ag and Cu products, were observed to be in micrometer scale. AgCuO nanomaterial demonstrated most efficient degradation of methylene blue, based on visual and UV spectrum analysis. AgCuO nanomaterial instantly converted the blue colored methylene blue solution into pale green color. Based on gas chromatography mass spectrum (GC-MS) analysis, the mechanism of degradation (chemical attack) was identified, by matching the molecular weight of the fragmented derivatives. AgCuO nanomaterial attacks the Sulphur (S) atom to produce a AgCuS complex, breaking the methylene blue into N, N-dimethylcyclohexa-2,5-dienamine and N, N-dimethylcyclohexa-2,5-diene-1,4-diamine. It was observed that the AgCuO nanomaterials were reusable upto 5times at the tested concentration. The AgCuO Nanomaterial also demonstrated significant antibacterial activity against tested pathogens. These results suggest that the AgCuO Bimetalic Nanomaterial can potentially be applied in treatment of industrial effluents to degrade methylene blue, with added antibacterial effect.
Cite this article:
Lokesh Ravi, Venkatesh Selvaraj, Saranya Shankar, Ranjitha Dhevi V. Sundar, Gayathri Segaran, Suganya Kumaresan, Venkatesh Sadhana. Methylene Blue Degradation by AgCuO Bimetallic Nanomaterial, Green Synthesized using Cordia sebestena leaves. Research J. Pharm. and Tech. 2020; 13(7): 3122-3128. doi: 10.5958/0974-360X.2020.00552.1
Cite(Electronic):
Lokesh Ravi, Venkatesh Selvaraj, Saranya Shankar, Ranjitha Dhevi V. Sundar, Gayathri Segaran, Suganya Kumaresan, Venkatesh Sadhana. Methylene Blue Degradation by AgCuO Bimetallic Nanomaterial, Green Synthesized using Cordia sebestena leaves. Research J. Pharm. and Tech. 2020; 13(7): 3122-3128. doi: 10.5958/0974-360X.2020.00552.1 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-7-12
REFERENCES:
1. Hashemian Rahaghi SH, Poursalehi R, Miresmaeili R. ScienceDirect Optical Properties of Ag-Cu Alloy Nanoparticles Synthesized by DC Arc Discharge in Liquid. Procedia Mater Sci. 2015;11:738-742. doi:10.1016/j.mspro.2015.11.062
2. Wang HK, Yi CY, Tian L, et al. Ag-Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. J Nanomater. 2012. doi:10.1155/2012/453915
3. Xia Z, Ma Q, Li S, Zhang D. The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect. 2016;49(2):182-188. doi:10.1016/j.jmii.2014.04.013
4. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016. doi:10.1016/j.jare.2015.02.007
5. Venkatesan B, Subramanian V, Tumala A, Vellaichamy E. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac J Trop Med. 2014. doi:10.1016/S1995-7645(14)60249-2
6. Hashjin HZ, Poursalehi R. ScienceDirect Optical Properties of Pure and Alloyed Silver-Copper Nanoparticles Embedded and Coupled in Dielectric Matrixes. Procedia Mater Sci Zabihi Hashjin R Poursalehi / Procedia Mater Sci. 2015;11(11):717-721. doi:10.1016/j.mspro.2015.11.050
7. Chandra S, Kumar A, Tomar PK. Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc Saudi Chem Soc. 2014;8(2):149-153. doi:10.1016/j.jscs.2011.06.009
8. Guzman A, Arroyo J, Verde L, Rengifo J. Synthesis and Characterization of Copper Nanoparticles/Polyvinyl Chloride (Cu NPs/PVC) Nanocomposites. Procedia Mater Sci. 2015. doi:10.1016/j.mspro.2015.04.038
9. Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Reports. 2017. doi:10.1016/j.btre.2017.02.006
10. Senthil Kumar P, Narayan AS, Dutta A. Nanochemicals and Effluent Treatment in Textile Industries. In: Textiles and Clothing Sustainability.; 2017. doi:10.1007/978-981-10-2188-6_2
11. Rajkuberan C, Prabukumar S, Sathishkumar G, Wilson A, Ravindran K, Sivaramakrishnan S. Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J Saudi Chem Soc. 2016. doi:10.1016/j.jscs.2016.01.002
12. Pattanayak S, Masud Rahaman Mollick M, Maity D, et al. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. J Saudi Chem Soc. 2015. doi:10.1016/j.jscs.2015.11.004
13. Salem W, Leitner DR, Zingl FG, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol. 2015. doi:10.1016/j.ijmm.2014.11.005
14. Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci. 2015;8(3):265-275. doi:10.1016/j.jrras.2015.01.007
15. Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. 2014. doi:10.1016/j.arabjc.2014.11.014
16. Das B, Kumar S, Mandal D, Ghosh T. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem. 2015. doi:10.1016/j.arabjc.2015.08.008
17. Nongalleima K, Ajungla T, Singh CB, Chingakham C, Singh B. Phytochemical, total phenolic, total flavonoid and total flavonol content estimation in Citrus macroptera Montruz. J Med Plants Stud NAAS Rat JMPS. 2017;11453(53):114-118.
18. Andriani Y, Madihah N, Fitrya D, et al. Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arab J Chem. 2015. doi:10.1016/j.arabjc.2015.11.003
19. Edrah SM, Aljenkawi A, Omeman A, Alafid F. Qualitative and quantities analysis of phytochemicals of various extract for Ephedra altissima from Libya. J Med Plants. 2016;4(3):119-121.
20. Nazeruddin GM, Prasad RN, Shaikh YI, Shaikh AA. Synergetic effect of Ag-Cu bimetallic nanoparticles on antimicrobial activity. Der Pharm Lett. 2014;6(3):129-136.
21. Dhanaraj S, Bharathiraja P, Dhandapani R, Subbaiya R, Kathiresha AK. Biosynthesis and Characterization of Silver Nanoparticles from Aspergillus niger and its Antibacterial Activity. Res J Pharm Technol. 2018;11(12):5282-5286.
22. Sujatha J, Suriya P, Rajeshkumar S. Biosynthesis and Characterization of silver Nanoparticles by Actinomycetes isolated from Agriculture field and its application on Antimicrobial activity. Res J Pharm Technol. 2017;10(6):1963-1968.
23. Ravi L, Kannabiran K. Bioactivity-Guided Extraction and Identification of Antibacterial Compound from Marine Actinomycetes Strains Isolated from Costal Soil Samples of Rameswaram and Dhanushkodi, Tamil Nadu, India. Asian J Pharm. 2017;10(4).
24. Sudhakar T, Balashanmugam P, Premkumar J, Anisha A, Karthika D. Antimicrobial activity of Silver Nanoparticles synthesized from Ficus benghalensis against Human Pathogens. Res J Pharm Technol. 2017;10(9):1635-1640.