Author(s):
Rangisetty Spandana Yasaswini, Mukthinuthalapati Mathrusri Annapurna, Avuthu Sai Sheela
Email(s):
mmukthin@gitam.edu
DOI:
10.5958/0974-360X.2020.00514.4
Address:
Rangisetty Spandana Yasaswini, Mukthinuthalapati Mathrusri Annapurna*, Avuthu Sai Sheela
Department of Pharmaceutical Analysis, GITAM Institute of Pharmacy, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh-530045, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 6,
Year - 2020
ABSTRACT:
Trifluridine is an anti-viral drug. A new stability indicating ultrafast liquid chromatographic method has been developed for the assay of Trifluridine in ophthalmic solutions and validated. Shimadzu Model CBM-20A/20 Alite UFLC system (Shimadzu Co., Kyoto, Japan) equipped with SPD M20A prominence photodiode array detector with C18 Agilent column (250 mm × 4.60 mm i.d. 5µm particle size) and a mobile phase consisting of Acetonitrile: water (50:50, v/v) with flow rate 0.8 ml/min (UV detection at 261 nm) was used for the present study. Trifluridine has shown linearity1-100 µg/mL with linear regression equation y = 66167x + 13368 (R² = 0.9999). Trifluridine was subjected to forced degradation and method was validated as per ICH guidelines.
Cite this article:
Rangisetty Spandana Yasaswini, Mukthinuthalapati Mathrusri Annapurna, Avuthu Sai Sheela. New stability indicating RP-UFLC method for the determination of Trifluridine – A potent antiviral drug. Research J. Pharm. and Tech 2020; 13(6): 2881-2885. doi: 10.5958/0974-360X.2020.00514.4
Cite(Electronic):
Rangisetty Spandana Yasaswini, Mukthinuthalapati Mathrusri Annapurna, Avuthu Sai Sheela. New stability indicating RP-UFLC method for the determination of Trifluridine – A potent antiviral drug. Research J. Pharm. and Tech 2020; 13(6): 2881-2885. doi: 10.5958/0974-360X.2020.00514.4 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-6-64
REFERENCES:
1. Chen X, Ji ZL, Chen YZ. Therapeutic target database. Nucleic Acids Research. 2002; 30(1); 412-415.
2. De Clercq E. Antiviral drugs in current clinical use. Journal of Clinical Virology. 2004; 30(2): 115-133.
3. Pavan Langston D and Nelson DJ. Intraocular penetration of Trifluridine. American Journal of Ophthalmology. 1979; 87(6): 814-818.
4. Nozawa C, Hattori LY, Galhardi LC. Herpes simplex virus: Isolation, cytopathological characterization and antiviral sensitivity. The Journal Brazilian Annals of Dermatology. 2014; 89(1): 448-452.
5. Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Trifluridine: A review of its antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs.1989; 23(5): 329-353.
6. Bijnsdorp IV, Kruyt FA, Fukushima M, Peters GJ. Trifluorothymidine induces cell death independently of p53. Nucleosides Nucleotides Nucleic Acids. 2008; 27(6): 699-703.
7. Emura T, Nakagawa F, Fujioka A, Ohshimo H, Kitazato K. Thymidine kinase and thymidine phosphorylase level as the main predictive parameter for sensitivity to TAS-102 in a mouse model. Oncology Reports 2004; 11(2): 381-387.
8. Costin D, Dogaru M, Popa A and Cijevschi I. Trifluridine therapy in herpetic in keratitis. Rev Med Chir Soc Med Nat Iasi. 2004; 108 (2): 409-412.
9. O'Brien W and Taylor J. Therapeutic response of herpes simplex virus-induced corneal edema to trifluridine in combination with immunosuppressive agents". Invest Ophthalmol Vis Sci. 1991; 32 (9): 2455–2461.
10. ICH Validation of analytical procedures: Text and methodology Q2 (R1), International Conference on Harmonization (2005).
11. ICH Stability Testing of New Drug Substances and Products Q1A (R2), International Conference on Harmonization (2003).