Author(s): Firoj Alam, Badruddeen, Anil Kumar Kharya, Akhtar Juber, Mohammad Irfan Khan

Email(s): badarmiracle@gmail.com

DOI: 10.5958/0974-360X.2020.00447.3   

Address: Firoj Alam1, Badruddeen2*, Anil Kumar Kharya1, Akhtar Juber2, Mohammad Irfan Khan2
1Kunwar Haribansh Singh, College of Pharmacy, Jaunpur 222001 (U.P.), India.
2Faculty of Pharmacy Integral University, Dasauli, P.O. Bas-ha Kursi Road, Lucknow – 226026 (U.P.), India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 5,     Year - 2020


ABSTRACT:
Flavonoids have a propensity to be the essential natural ingredients with various biological activities. The citrus fruits represent a big series of flavonoids. Naringin, a natural flavanone glycoside, found principally in grapes, tomatoes and citrus fruits. The aglycone naringenins exhibit strong anti-inflammatory and antioxidant activities. Naringin is helpful for the treatment of obesity, diabetes, high blood pressure and metabolic syndrome. A series of molecular mechanisms underlying its helpful activities are elucidated. Some modulating signaling pathways and interaction of Naringin with signaling molecules are elaborated. Naringin represented wide range of pharmacological activities like anti-inflammatory and anti-cancer activities. It also exhibited effects on bone regeneration, metabolic syndrome, oxidative stress, genetic injury and the diseases associated with central nervous system. Some of the reported molecular docking, cell line studies along with the controlled release nanogel formulations development of of naringin were also discussed.


Cite this article:
Firoj Alam, Badruddeen, Anil Kumar Kharya, Akhtar Juber, Mohammad Irfan Khan. Naringin: Sources, Chemistry, Toxicity, Pharmacokinetics, Pharmacological Evidences, Molecular Docking and Cell line Study. Research J. Pharm. and Tech 2020; 13(5):2507-2515. doi: 10.5958/0974-360X.2020.00447.3

Cite(Electronic):
Firoj Alam, Badruddeen, Anil Kumar Kharya, Akhtar Juber, Mohammad Irfan Khan. Naringin: Sources, Chemistry, Toxicity, Pharmacokinetics, Pharmacological Evidences, Molecular Docking and Cell line Study. Research J. Pharm. and Tech 2020; 13(5):2507-2515. doi: 10.5958/0974-360X.2020.00447.3   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-5-77


REFERENCE:
1.    Mukherjee PK. Quality control of herbal drugs. Business Horizons, New Delhi, India, 2002;46-65
2.    Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:4180-25
3.    Rangaswami S, Seshadri TR, Veeraraghaviah J. Constitution of naringin. The position of the sugar group. J Proc Ind Acad Sci. 1939;9:328-332.
4.    Sinclair WB. The grapefruit: its composition, physiology & products. Berkeley UC ANR publications. 1972:134
5.    Ho PC, Saville DJ, Coville PF, Wanwimolruk S. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products. Pharm Acta Helv. 2000;74:379-385.
6.    Rouseff RL, Martin SF, Youtsey CO. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus J Agric Food Chem. 1987;35:1027-1030
7.    Asahina Y, Inubuse M. Über dies Konstitution des Naringenins (II. Mittei- lung über die Flavanon-Glucoside) Chemische Berichte. 1928;61:1514.
8.    Braverman JBS. Citrus products. Chemical composition and chemical technology. New York: Interscience Publishers. 1949:424.
9.    Ishii K, Furuta T, Kasuya Y. Determination of naringin and naringenin in human urine by high-performance liquid chromatography utilizing solid-phase extraction. J Chromatogr B Biomed Sci Appl. 1997;704:299-305.
10.    Tomasik P. Chemical and functional properties of food saccharides. Boca Raton: CRC Press. 2004:389.
11.    Felgines C, Texier O, Morand C, et al. Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1148-G1154.
12.    Sánchez-Rabaneda F, Jáuregui O, Casals I, et al. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom. 2003;38:35-42.
13.    Exarchou V, Godejohann M, van Beek TA, Gerothanassis IP, Vervoort J. LC‑UV-solid-phase extraction-NMR‑MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Anal Chem. 2003;75:6288-6294.
14.    Minoggio M, Bramati L, Simonetti P, et al. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann Nutr Metab 2003;47:64-69.
15.    Er HM, Cheng EH, Radhakrishnan AK. Anti-proliferative and mutagenic activities of aqueous and methanol extract of leaves from Pereskia bleo (Kunth) DC (Cactaceae). J Ethnopharmacol. 2007;113:448-456.
16.    Hungria M, Johnston AW, Phillips DA. Effects of flavonoids released nat- urally from bean (Phaseolus vulgaris) on D-regulated gene transcription in Rhizobium leguminosarum bv. Phaseoli Mol Plant Microbe Interact. 1992;5:199-203.
17.    Wang H, Nair MG, Strasburg GM, Booren AM, Gray JI. Antioxidant polyphenols from tart cherries (Prunus cerasus). J Agric Food Chem. 1999;47:840-844.
18.    Caccamese S, Chillemi R. Racemization at C-Z of naringin in Pummela (citrus grandis) with increasing maturity determined by chiral high performance liquid chromatography. Journal of Chromatography. 2010;1217:1089-1093.
19.    Gorustein S, Huang D, Leoutowicz H, et al. Determination of Naringin and hesperidin in citrus fruit by high performance liquid chromatography, the antioxidant potential of citrus fruit. Acta Chromatographica. 2006;17:108-124.
20.    Ting WU, Oman Y, Jiannong YE. Determination of flavonoids and ascorbic acid in grape fruit peel and juice by capillary electrophoresis with electro chemical detection. Food Chemistry. 2007;100:1573-1579.
21.    Arnao MB, Casas JL, Del Rio JA, Costa MA, Garcia-Canovas F. An enzymatic colorimetric method for measuring Naringin using 2,2’ Azino- bix (3- ethyl benzthiazoline- 6 Sulphonic acid (ABTS) in the presence of peroxidase. Analytical Biochemistry. 1990;185:336-338.
22.    Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016;54:3203-3210.
23.    Marques J, Vila-Real HJ, Alfaia AJ, Riberiro H. Modeling of high pressuretemperature effect on Naringin hydrolysis based on response surface methodology. Food Chemistry. 2007;105:504-510.
24.    Hsiu SL, Huang TY, Hou YC, Chin DH, Chao PD. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci. 2002;70:1481-1489.
25.    Liu M, Zou W, Yang C, Peng W, Su W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm Drug Dispos. 2012;33:123-134.
26.    Mata-Bilbao Mde L, Andrés-Lacueva C, Roura E, et al. Absorption and pharmacokinetics of grapefruit flavanones in beagles. Br J Nutr. 2007;98:86-92.
27.    Ameer B, Weintraub RA, Johnson JV, Yost RA, Rouseff RL. Flavanone absorption after naringin, hesperidin, and citrus administration. Clin Pharmacol. 1996;60:34-40.
28.    Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 1998;21:17-23.
29.    Griffiths LA, Smith GE. Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J. 1972;130:141-151.
30.    Griffiths LA,. Metabolism of flavonoid compounds in germ- free rats. Biochem J. 1972;130:1161-1162.
31.    Shirasaka Y, Suzuki K. Intestinal absorption of HMG‑CoA reductase inhibitor pitavastatin mediated by organic anion transporting polypeptide and P-glycoprotein/multidrug resistance. Drug Metab Pharmacokinetic. 2011;26:171-179.
32.    Yamakawa Y, Hamada A, Shuto T, et al. Pharmacokinetic impact of SLCO1A2 polymorphisms on imatinib disposition in patients with chronic myeloid leukemia. Clin Phar macol Ther. 2011;90:157-163.
33.    Nishimuta H, Ohtani H. Inhibitory effects of various beverages on human recombinant sulfotransferase isoforms SULT1A1 and SULT1A3. Biopharm Drug Dispos. 2007;28:491-500.
34.    Walle T, Eaton EA, Walle UK. Quercetin, a potent and specific inhibitor of the human P-form phenosulfotransferase. Biochem Pharmacol. 1995;50:731-734.
35.    Rajadurai M, Stanely P. Preventive effect of naringin on lipid peroxide and antioxidant in isoproterenol induced cardiotoxicity in Wistar rats. Biochemical and histopathological evids. Toxico. 2006;228:259-268.
36.     Jagetia GC, Reddy TK. Alleviation of Iron induced oxidative stress by the grape fruit flavonones naringin in vitro. ChemicoBiological Interactions. 2011;190:121-128.
37.    Jeon SM, Bok SH, Jang MK, et al. Comparison of antioxidant effects of Naringin and probucol in cholesterol–fed rabbits. Clin Chim Acta. 2002;317:181-190.
38.    Wang H, Nair MG, Strasburg GM, Booren AM, Gray JI. Antioxidant polyphenols from tart cherries (Prunus cerasus). J Agric Food Chem. 1999;47:840-844.
39.    Minoggio M, Bramati L, Simonetti P, et al. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars Ann Nutr Metab. 2003;47:64-69.
40.    Pari L, Amudha K. Hepatoprotective role of Naringin on nickel induced toxicity in male Wistar rats. European Journal of Pharmacology. 2011;650:364-370.
41.    Karaman A, Iraz M. Hepatic damage in biliary obstructed rats is ameliorated by leflunomide treatment. Pediatr Surg Int. 2006;22:701-708.
42.    Pari L, Amudha K. Hepatoprotective role of naringin on nickel-induced toxicity in male Wistar rats. Eur J Pharmacol. 2011;650:364-370.
43.    Renugadevi J, Prabu SM. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Exp Toxicol Pathol. 2010;62:171-181.
44.    Guan LP, Nan JX, Jin XJ, et al. Protective effects of chalcone derivatives for acute liver injury in mice. Arch Pharm Res. 2005;28:81-86.
45.    Krogh-Madsen R, Plomgaard P, Møller K, Mittendorfer B, Pedersen BK. Influence of TNF-a and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab. 2006;291:E108-E114.
46.    Gopinath K, Sudhandiran G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience. 2012;227:134-143
47.    Kanno S, Shouji A, Asou K, Ishikawa M. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci. 2003;92:166-170.
48.    Amaro MI, Rocha J, Vila-Real H, et al. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int. 2009;42:1010-1017.
49.    Golechha M, Chaudhry U, Bhatia J, Saluja D, Arya DS. Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol Pharm Bull. 2011;34:360-365.
50.    Jain M, Parmar HS. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res. 2011;60:483-491.
51.    Tsai S-J, Huang CS, Mong MC, Kam WY, Huang HY, Yin MC. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem. 2012;60:514-521.
52.    Rajadurai M. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology. 2006; 228:259-268.
53.    Reddy TK, Nagaraju I, Kumar KH, Lokanatha V, Reddy CD, Jagetia GC. Cardioprotective effect of naringin in mice treated with doxorubicin. Planta Med. 2008;74:49-51.
54.    Panchal SK, Poudyal H, Iyer A, et al. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011;57:611-624.
55.    Qin CX, Chen X, Hughes RA, Williams SJ, Woodman OL. Under- standing the cardioprotective effects of flavonols: discovery of relaxant flavonols without antioxidant activity. J Med Chem. 2008;51:1874-1884.
56.    Huang H, Wu K, You Q, Huang R, Li S, Wu K. Naringin inhibits high glucose-induced cardiomyocyte apoptosis by attenuating mitochon- drial dysfunction and modulating the activation of the p38 signaling pathway. Int J Mol Med. 2013;32:396-402.
57.    Ikemura M, Sasaki Y, Giddings JC, Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res. 2012;26:1272-1274.
58.    Russell RP. Side effects of calcium channel blockers. Hypertension. 1988;11:II42-II44.
59.    Fallahi F, Roghani M, Moghadami S. Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats. Indian J Pharmacol. 2012;44:382-386.
60.    Saponara S, Testai L, Iozzi D, et al. (+/2)-Naringenin as large conductance Ca2+-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br J Pharmacol. 2006;149:1013-1021.
61.    Chen S, Ding Y, Tao W, Zhang W, Liang T, Liu C. Naringenin inhibits TNF-a induced VSMC proliferation and migration via induction of HO-1. Food Chem Toxicol. 2012;30:25-31.
62.    Reshef N, Hayarib Y, Gorenb C, Boazc M, Madarb Z, Knoblera H. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. Am J Hypertens. 2005;18:1360-1363.
63.    Chen Y, Nie YC, Luo YI, et al. Protective effects of naringin against paraquatinduce cute lung injury and pulmonary fibrosis in mice. Food Chem Toxicol. 2013;58:133-1340.
64.    Huang H, Wu K, You Q, Huang R, Li S, Wu K. Naringin inhibits high glucose-induced cardiomyocyte apoptosis by attenuating mitochondrial dysfunction and modulating the activation of the p38 signaling pathway. Int J Mol Med. 2013;32:396-402.
65.    Al-Rejaie SS, Abuohashish HM, Al-Enazi MM, Al-Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid induced ulcerative colitis in rats. World J Gastroenterol. 2013;34:5633-5644.
66.    Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 2004;92:1-21.
67.    Alam MA, Kauter K, Brown L. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat dietfed rats. Nutrients. 2013; 5:637-650.
68.    Pu P, Gao DM, Mohamed S, et al. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high fat diet. Arch Biochem Biophys. 2012;518:61-70.
69.    Cho KW, Kim YO, Andrade JE, Burgess JR, Kim YC. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor alpha protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr. 2011;50:81-88.
70.    Horiba T, Nishimura I, Nakai Y, Abe K, Sato R. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cell Endocrinol. 2010;323:208-214.
71.    Ikemura M, Sasaki Y, Giddings JC, Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res. 2012;26:1272-1277.
72.    Rajadurai M, Prince PS. Preventive effect of naringin on cardiac mitochondrial enzymes during isoproterenol-induced myocardial infarction in rats: a transmission electron microscopic study. J Biochem Mol Toxicol. 2007;21:354-361
73.    Punithavathi VR, Anuthama R, Prince PSM. Combined treatment with naringin and vitamin C ameliorates streptozotocin-induced diabetes in male Wistar rats. J Appl Toxicol. 2008;28:806-813.
74.    Jung UJ, Lee MK, Jeong KS, Choi MS. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db Mice. J Nutr. 2004;134:2499-2503.
75.    Gopikrishnan M , Madankumar A,Ashok M ,Naringin Attenuates DMBA-Induced Mammary Carcinogenesis in Rats via Regulating the Oxidative Stress and Antioxidants Status. Journal of Chemical and Pharmaceutical Research. 2018;7:44-54.
76.    Galati EM, Monforte MT, dʼAquino A, Miceli N, Di Mauro D, Sanogo R. Effects of naringin on experimental ulcer in rats. Phytomedicine. 1998;5:361-366.
77.    Martín MJ, Marhuenda E, Pérez-Guerrero C, Franco JM. Antiulcer effect of naringin on gastric lesions induced by ethanol in rats. Pharmacology. 1994;49:144-150.
78.    Gaur V, Aggarwal A, Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol. 2009;616:147-154.
79.    Itoh K, Masuda M,. Anti-allergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. J Nat Med. 2009;63:443-450.
80.    Oliva J, French BA, Li J, Bardag-Gorce F, Fu P, French SW. Sirt1 is involved in energy metabolism: the role of chronic ethanol feeding and resveratrol. Exp Mol Pathol. 2008;85:155-159.
81.    Gupta SK, Gautam S,Combating methotrexate-induced intestinal toxicity. RSC Adv. 2015;5:9354-9360.
82.    Froufe HJ, Abreu RM, Ferreira IC. Using molecular docking to investigate the anti-breast cancer activity of low molecular weight compounds present on wild mushrooms. SAR QSAR Environ Res. 2011;22:315-328.
83.    Verbeek R, Plomp AC,. The flavones luteolin and apigenin inhibit in vitro antigenspecific proliferation and interferon gamma production by murine and human autoimmune T cells. Biochem Pharml. 2004;68:621-629.
84.    Gaur V, Aggarwal A,. Protective effect of Naringin against ischemic reperfusion cerebral injury; possible neuro behavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol. 2009; 616:147-154.
85.    Wong RW, Rabie AB. Effect of naringin on bone cells. J Orthop Res. 2006;24:2045-2050.
86.    Wu JB, Fong YC, Tsai HY, Chen YF, Tsuzuki M, Tang CH. Naringin-induced bone morphogenetic protein-2 expression via PI3K,. Eur J Pharmacol. 2008;588:333-341.
87.    Ong MM, Latchoumycandane C, Boelsterli UA. Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci. 2007;97:205-213.
88.    Shin YK, Sohn UD, Choi MS, Kum C, Sim SS, Lee MY. Effects of rutin and harmaline on rat reflux oesophagitis. Auton Autacoid Pharmacol. 200;22:47-55.
89.    Giri AK, Rawat JK, Singh M, Gautam S, Kaithwas G. Effect of lycopene against gastroesophagitis reflux disease in experimental animals. BMC Complement Altern Med. 2015;15:1-7.
90.    Karaman A, Iraz M, Kirimlioglun H, Karadag N, Tas E, Fadillioglu E. Hepatic damage in biliary obstructed rats is ameliorated by leflunomide treatment. Pediatr Surg Int 2006;22:701-708.
91.    Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035-1042.
92.    Dent J, El-Serag HB, Wallander MA, and Johansson S. Epidemiology of gastroesophagitis reflux disease: a systematic review. Gut. 2005;54:710-717.
93.    Souza RF, Huo X, Mittal V, et al. Gastroesophagitis reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137:1776-1784.
94.    Kin DS, Tertychnyy A, De-hertogh G, Geboes K, Tack J. Intestinal immune activation in presumed post-infectious functional dyspepsia. Neurogastroenterol Motil. 2009; 21:832-856.
95.    Mitushing S, Jang JS, Yoshizawa Y, et al. Proton pump inhibitor therapy before and after endoscopic submucosal dissection: a review. Diagn Ther Endosc. 2012:791873.
96.    Goel RK, Sairam K. Antiulcer drugs from indigenous sources with emphasis on Musa sapientum, Tamrabhasna, Asparagus racemosus and Zingiber officinale. Indian J Pharmacol. 2002;34:100-110.
97.    Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-a induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor- mediated signal transduction. J Biol Chem. 1997; 272:971-976.
98.    Lin CY, Ni CC, Yin MC, Lii CK. Flavonoids protect pancreatic beta-cells from cytokines mediated apoptosis through the activation of PI3-kinase pathway. Cytokine. 2012;59:65-71.
99.    García-Lafuente A, Guillamón E, Villares A, Rostagno M, Martínez J. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res. 2009;58:537-552.
100.    Lee EJ, Kim DI.Naringin inhibits matrix metalloproteinase-9 expression and AKT phosphorylation in tumor necrosis factor-a-induced vascular smooth muscle cells. Mol Nutr Food Res. 2009;53:1582-1591.
101.    Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881-887.
102.    Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr. 2010;140:648-652.
103.    Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23:469-480.
104.    Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis A. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.
105.    Fukuchi Y. Lemon polyphenols suppress diet-induced obesity by upregulation of mRNA levels of the enzymes involved in beta-oxidation in mouse white adipose tissue. J Clin Biochem Nutr. 2008; 43:201-209.
106.    Zhang X, Li L, Xu Z, Liang Z, Su J. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking. PLoS. 2013; 8: e59106.
107.    Wong R, Rabie A. Effect of naringin on bone cells. J Orthop Res. 2006;11:2045-2050.
108.    Wei Shen and Yan Hua Lu. Molecular docking of citrus flavonoids with some targets related to diabetes. Bangladesh J Pharmacol. 2013;8:156-170.
Malihehentezari, Elham K. Cytotoxicity effects of nanonaringin on nalm6 cell line. International Conference, Brussels, Belgium. 2016;34:978-993.

Recomonded Articles:

Author(s): Niha Naveed, Karthikeyan Murthykumar, Subasree Soundarajan, Sripradha Srinivasan

DOI: Not Available         Access: Open Access Read More

Author(s): Prasad V. Patrekar, Sachin S. Mali

DOI: Not Available         Access: Open Access Read More

Author(s): Priya P. Munshi, D.S. Mohale, R. Akkalwar, A.V. Chandewar

DOI: Not Available         Access: Open Access Read More

Author(s): Manju Rawat, SJ Daharwal, Deependra Singh

DOI:         Access: Open Access Read More

Author(s): S. R Suseem, Dhanish Joseph

DOI: 10.5958/0974-360X.2019.00067.2         Access: Open Access Read More

Author(s): Koushika Das, Pranit Krishna, Avipsha Sarkar, Shanmuga Sundari Ilangovan, Shampa Sen

DOI: 10.5958/0974-360X.2017.00267.0         Access: Open Access Read More

Author(s): U.S Mahadeva Rao, Khamsah Suryati Mohd, Abdurrazaq Muhammad, Bashir Ado Ahmad, Mohaslinda Mohamad, Rosmawati Mat Ali

DOI: Not Available         Access: Open Access Read More

Author(s): Deepak Karki, Gururaj S. Kulkarni, Shivakumar Swamy, Sheeba FR

DOI: 10.5958/0974-360X.2017.00750.8         Access: Open Access Read More

Author(s): Rekha Rajendran, R Hemachander, T Ezhilarasan, C Keerthana, DL Saroja, KV Saichand, Mohamed Gasim Abdullah

DOI: Not Available         Access: Open Access Read More

Author(s): Hayat M. Mukhtar, Vandna Kalsi

DOI: 10.5958/0974-360X.2018.00395.5         Access: Open Access Read More

Author(s): Yarnykh T. G., Kotvitska A. A., Tykhonov A. I., Rukhmakova O. A.

DOI: 10.5958/0974-360X.2020.00614.9         Access: Open Access Read More

Author(s): Shrivastava Alankar, Jain R., Agrawal R.K., Ahirwar D.

DOI:         Access: Open Access Read More

Author(s): Som K. Madhvi, Manik Sharma, Javaid Iqbal, Mohd Younis

DOI: 10.5958/0974-360X.2019.00785.6         Access: Open Access Read More

Author(s): Avinash Bhagwat, Suhas M Kakade, Chirag V Naval, Mukesh Tilker, Ravindra M Walture, Sagar A Adichwal and Atul P Chaudhari

DOI: Not Available         Access: Open Access Read More

Author(s): Sandesh More, Javed Mirza, Nanasaheb Kale, Mayur Gandhi, Rakesh Chaudhari

DOI: Not Available         Access: Open Access Read More

Author(s): Fathima Mariyam Niyas

DOI: 10.5958/0974-360X.2015.00182.1         Access: Open Access Read More

Author(s): Praveen D, Ranadheer Chowdary P, Gandikota Thanmayi, Gangabathina Poojitha, Vijey Aanandhi M

DOI: 0.5958/0974-360X.2016.00047.0         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags