Author(s): Kalaiselvi S, Manimaran V, Damodharan N

Email(s): manimaranrx1978@gmail.com

DOI: 10.5958/0974-360X.2020.00384.4   

Address: Kalaiselvi S, Manimaran V, Damodharan N
Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur - 603203.
*Corresponding Author

Published In:   Volume - 13,      Issue - 5,     Year - 2020


ABSTRACT:
Neurodegenerative disorders are diseases that are responsible for the malfunctioning of the brain and peripheral nervous system. The drugs that are mainly used for therapeutic purpose is to cross the Blood-Brain Barrier (BBB) because this barrier allows specific nutrients that are helpful for the treatment of these neurodegenerative disorders. The BBB is a closely packed layer of endothelial cells that inhibits undesirable substance to enter the brain. Therefore Nanotechnology plays an important role because it acts as a well-organized drug delivery system that could help in penetrating the BBB and produce fruitful treatment for neurodegenerative dysfunction such as Alzheimer and Parkinsonism. A nanoparticle has been utilized in-vivo to secure the medicament in systemic distribution and drug will be released to the site of action in a prolonged and controlled manner. Most prominent treatments for this disorder are unavailable due to the deficient penetrability of therapeutic drugs. Theranostic strategies are familiar to combine therapeutic and diagnostic capabilities. This review tells about the administration of drugs to cross the brain and the importance of using nanoparticles as an efficient theranostic platform for the treatment of neurodegenerative disease.


Cite this article:
Kalaiselvi S, Manimaran V, Damodharan N. Nanoparticle as a powerful tool to penetrate the Blood-brain barrier in the treatment of Neurodegenerative disease: Focus on recent advances. Research J. Pharm. and Tech 2020; 13(5): 2135-2143. doi: 10.5958/0974-360X.2020.00384.4

Cite(Electronic):
Kalaiselvi S, Manimaran V, Damodharan N. Nanoparticle as a powerful tool to penetrate the Blood-brain barrier in the treatment of Neurodegenerative disease: Focus on recent advances. Research J. Pharm. and Tech 2020; 13(5): 2135-2143. doi: 10.5958/0974-360X.2020.00384.4   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-5-14


REFERENCES:
1.    Mohanraj VJ et al., Nanoparticles- A Review. Tropical Journal of Pharmaceutical Research. June 2006; 5 (1): 561-573
2.    KonwarRanjit et al., Nanoparticle: An overview of preparation, characterization, and application. Int. Res. J. Pharm. 2013; 4(4): 47-57
3.    Akbari.B et al., Particle size characterization of nanoparticles- A particle approach. Iran. J. Mater. Sci. Eng.2011;8(2).
4.    Vauthier C et al., Poly (alkyl cyanoacrylates) as biodegradable materials for biomedical applications. P. Adv Drug Deliv Rev. 2003 Apr 25; 55(4): 519-48.
5.    A. Mohamad et al., Nanoparticles: A review on their synthesis, characterization and physicochemical properties for the energy technology industry. J. Adv. Res. Fluid Mech. Therm. Sci. 2018; 46(1):1-10
6.    Michel Goedert.Alpha-synuclein and neurodegenerative diseases.Nature reviews neuroscience. July 2001; Volume 2: 492-501
7.    Sheikh S et al., Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions. Journal of Neurodegenerative Diseases, 2013; 1–8.
8.    Dobson, C. M. Protein folding and misfolding. Nature international journal of science. 2003; 426(6968): 884–890.
9.    Syed TazibRahaman. A Review on Treatment for Neurodegenerative disease with the help of nanosciences. World J Pharm Sci 2018; 6(9): 153-162.
10.    P. Velavan et al., Nanoparticle as drug delivery systems. J  Pharm  Sciand Res Vol. 2015; 7(12): 1118-1122
11.    Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005;2:369-81
12.    Vila et al., Design of biodegradable particles for protein delivery. J Control Release 2002; 78: 15-24.
13.    Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol(R)): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86: 33-48.
14.    Muhammad Adnan Younis, IftikharHussain Bukhari, Qaisar Abbas, Neelam Bin Talib, Sana Shaukat. Synthesis, importance and applications of metal oxide nanomaterials. Int. J. Tech. 2018; 8(2): 49-57
15.    Kishore UttamKothule et al., Development and Characterization of Chitosan Nanoparticles and Improvement of Oral Bioavailability of Poorly Water-Soluble Acyclovir. Research J. Pharm. and Tech.3 (4): Oct.-Dec.2010; Page 1241-1245.
16.    Davinder et al., Nanoparticles: An overview. Journal of Drug Delivery and Therapeutics; 2013; 3(2):169-175
17.    Jawahar N and Meyyanathan SN. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int J Health Allied Sci 2012; 1: 217-23.
18.    Abhilash M., Potential applications of Nanoparticles, International Journal of Pharma and Bio Sciences 2010; 1(1): 1-12
19.    Varde NK and Pack DW. Microspheres for controlled release drug delivery. Expert OpinBiolTher 2004; 3(1): 35-51.
20.    Kreuter J. Evaluation of nanoparticles as drug-delivery systems. PharmaActaHelv 1983;58:242-50
21.    W. H. De Jong and P. J. Borm. Drug delivery and nanoparticles: application and hazards. Int J Nanomedicine.2008; 3(2):133-149.
22.    Anirudha Malik et al., Dendrimers: a tool for drug delivery. Adv. Biol. Res. 2012; 6(4): 165-169.
23.    Li Y., Cheng Y., Xu T. Design, synthesis and potent pharmaceutical applications of glycodendrimers: a mini-review. Curr Drug Discov Technol. 2007; 4:246-54.
24.    Cheng Y et al., Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci. 2008; 13:1447-71.
25.    Meckeet al., Direct observation of lipid bilayer disruption by poly (amidoamine) dendrimers. ChemPhys Lipids. 2004;132:3-14.
26.    Rangel-Yagui CO, Pessoa A, Tavares LC. Micellar solubilization of drugs. Journal of Pharmacy and Pharmaceutical Sciences. 2005; 8:147–163.
27.    Gaucher G et al., Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release. 2005; 109:169–188.
28.    Aliabadi HM and Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 2006; 3:139–162.
29.    AbolfazlAkbarzadeh et al., Liposome: classification, preparation, and Applications. Nanoscale Res.Lett. 2013; 8(102):1-9.
30.    Vemuri, S., Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 1995; 70 (2): 95–111.
31.    Zhang, L., Granick, S., 2006. How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett. 2006; 6 (4): 694–698.
32.    Nagavarma, B.V.N et al., Different techniques for preparation of polymeric nanoparticles - a review.  Asian J.Pharm. Clin. Res. 2010; 5(3): 16-23.
33.    Gref R, et al. Biodegradable long-circulating polymeric nanospheres. Sci 1994; 263:1600-1603.
34.    Reis et al., Nanoencapsulation-Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine2006; 2(1):8-21.
35.    KarunakaranSulochanaMeena, ThyagarajanVenkataraman, SingaravelGanesan, PrakasaRaoAruna. Gold–Nanoparticles A Novel Nano-Photosensitizer for Photodynamic Therapy. Asian J. Research Chem. 4(1): January 2011; Page 58-63.
36.    RinkuJaiswal, Shripal Singh, HemantPande. Magnetic Nanoparticles Activated Carbon: Preparation, Characterization and Application: A Review article. Asian J. Research Chem. 8(12): December 2015; Page 757-768
37.    Daniel MC and Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104:293-346.
38.    Gong P et al., Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007; 18(28): 604–611.
39.    MahendraRai et al., Silver Nanoparticles as a New Generation of Antimicrobials. Biotech. Adv. 2009;27(1): 76-83.
40.    Sharma V.K et al., Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 2009; 145(1-2): 83-96.
41.    Saraf R., Cost-effective and monodispersed zinc oxide nanoparticles synthesis and their characterization. Int. J. Adv. Appl. Sci. 2013; 2: 85-88
42.    Lopes, S., et al., Zinc oxide nanoparticles toxicity to Daphnia Magna: size-dependent effects and dissolution. Environ. Toxicol. Chem. 2014; 33 (1): 190–198.
43.    Chuang, H.-C., et al., Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology. 2014; 8 (6): 593–604.
44.    Cousins B et al., Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J. Appl. Microbiol. 2007; 102: 757-765.
45.    Egger S et al., Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009; 75: 2973-2976.
46.    Yang L et al., Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull 2010; 89(2):24-31.
47.    Thomas S et al., Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015; 21: 6165–6188.
48.    Ghasemi Y et al., Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed. 2009; 80(2):156-165.
49.    Larson DR et al., Wise FW. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003; 300:1434-1436.
50.    Michalet X et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307(5709):538-544.
51.    Qi, L and Gao, X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 2008; 5 (3): 63–67.
52.    Anu Mary Elias and M P Saravanakumar. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 263 (2017) 032019.
53.    Bosi S et al., Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 2003; 38(11-12):913-923.
54.    Ma H, Liang X-J. Fullerenes as unique nanopharmaceuticals for disease treatment. Sci. ChinaChem. 2010; 53(11):2233-2240.
55.    Venkatesan P et al., Microencapsulation: A Vital Technique In Novel Drug Delivery System. J. Pharm. Sci. and Res. 2009; 1(4): 26-35
56.    Mitchell D.R et al., The synthesis of mega tubes: new dimensions in carbon materials. Inorg. Chem. 2001; 40 (12): 2751–2755.
57.    Parveen S et al., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine Nanotechnology, Biol. Med. 2012; 8(2):147- 166.
58.    S. Choi et al., Hollow ZnOnnanofibers fabricated using electrospun polymer templates, ACS Nano. 2009;3: 2623-2631
59.    Ch.Prabhakar, K. Bala Krishna. A Review on Polymeric Nanoparticles. Research J. Pharm. and Tech. 4(4): April 2011; Page 496-498.
60.    Utpal Jana, Sovan Pal, G.P. Mohanta, P.K. Manna, R. Manavalan. Nanoparticles: A Potential Approach for Drug Delivery. Research J. Pharm. and Tech. 4(7): July 2011; Page 1016-1019.
61.    A.J. Parker et al., An electrochemical method for the production of graphite oxide, ECS Trans. 2013; 53: 23-32.
62.    V. Singh et al., Graphene-based materials: past, present and future, Prog. Mater. Sci. 2011; 56: 1178-1271.
63.    I. Ovid’ko, Mechanical properties of graphene, Rev. Adv. Mater. Sci. 2013; 34: 1-11.
64.    Sebok, E. B and Taylor, R. L. Carbon Blacks. Encyclopedia of Materials: Science and Technology. 2001; 902–906
65.    Morfeld P, McCunney RJ. "Carbon black and lung cancer: Testing a new exposure metric in a German cohort". Am J Ind Med. 2007; 50 (8): 565–567.
66.    Guozhong Cao. Zero-Dimensional Nanostructures: Nanoparticles. Nanostructures and Nanomaterials. 2004; 51–109.
67.    Tiwari J et al., Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science. 2012; 57(4): 724–803.
68.    Novoselov KS et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:10451-10453.
69.    Weeks, E. R. Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition. Science. 2000; 287(5453): 627–631.
70.    Jameel Ahmed Mulla et al., Formulation, Characterization and in vitro Evaluation of Methotrexate Solid Lipid Nanoparticles. Research J. Pharm. and Tech.2 (4): Oct.-Dec. 2009; Page 685-689.
71.    JaisonJeevanandam et al., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018; 9:1050–1074.
72.    D. Thulasi Ram, SubhashisDebnath, M. NiranjanBabu, T. ChakradharNath, Thejeswi B. A Review on Solid Lipid Nanoparticles. Research J. Pharm. and Tech. 5(11): Nov. 2012; Page 1359-1368.
73.    Tice TR., Gilley RM. Preparation of injectable controlled release microcapsules by a solvent- evaporation process. J Control Release. 1985; 2:343-352.
74.    Govender T et al., PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water-soluble drug. J Control Release. 1999; 57(2):171-185.
75.    Fessi H et al., Nano capsule formation by interfacial deposition following solvent displacement. Int J Pharm. 1989; 55:1–4.
76.    Kwon H-Y. Preparation of PLGA nanoparticles containing estrogen by emulsification diffusion method, Colloids Surf. Release, 2001; 182:123–30.
77.    Ueda H, and Kreuter J. Optimization of the preparation of loperamide- loaded poly (l-lactide) nanoparticles by high-pressure emulsification solvent evaporation. J Microencapsul. 1997; 14:593–605.
78.    Allémann E et al., In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure Pharm Res 1993;10:1732-37.
79.    Ibrahiam H et al., Aqueous nanodispersions prepared by a salting-out process. Int J Pharm 1992; 87:239-46.
80.    Allemann E, Gurny R, Doekler E. Drug-loaded nanoparticles preparation methods and drug targeting issues. Eur J Pharm Biopharm. 1993; 39:173–91.
81.    Bhatia S. Natural Polymer Drug Delivery Systems. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. 33-93
82.    Poovi G, Narayanan N. Preparation and characterization of repaglinide loaded chitosan polymeric nanoparticles. Research Journal of nanoscience and nanotechnology. 2010; 1(1): 12-24.
83.    Yadav et al.,Different Techniques for Preparation of Polymeric Nanoparticles- A Review. Asian J Pharm Clin Res. 2012; Vol 5(3):16-23.
84.    Hao L, Chi N and Triet N: Preparation of drug nanoparticles by an emulsion evaporation method. Journal of Physics 2009; 187:1-4.
85.    Hasan S. a review on nanoparticles: their synthesis and types. Res J Recent Sci 2015; 4:1-3.
86.    Couvreur P et al., Controlled drug delivery with Nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm. 1995; 41:2–13.
87.    Deore et al. Nanoparticle: as targeted drug delivery system for depression. International journal of current pharmaceutical research.  Int J Curr Pharm Res. 2016; 8(3):7-11
88.    Reverchon E, Adami R. Nanomaterials and supercritical fluids. J Supercrit Fluids. 2006; 37:1–22.
89.    Sun Y et al., Polymeric nanoparticles from the rapid expansion of the supercritical fluid solution. Chemistry. 2005; 11:1366–73.
90.    Tinke, A. P., Govoreanu R. and Vanhoutte K., “Particle Size and Shape Characterization of Nano- and Submicron Liquid Dispersions, American Pharmaceutical Review”, 2006.
91.    Garg A et al., Formulation, characterization and application on nanoparticle: a review. Der Pharmacia Sinica 2011; 2:17-26.
92.    Ahmad TajuddinMohamad. Nanoparticles: A Review on their Synthesis, Characterization and Physicochemical Properties for Energy Technology Industry. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2018; 46 (1): 1-10
93.    Mullaicharam AR. Nanoparticles in drug delivery system. Int J Nutr Pharmacol Neurol Dis 2011; 1: 103-9.
94.    Philippe M et al., Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur j pharm biopharm 1998; 46(2):137-43.
95.    Suganeswari M et al., Preparation, characterization and evaluation of nanoparticles containing hypolipidemic drug and antihypertensive drug. Int j pharm biological archives 2011; 2(3):949-53
96.    Kohane ds. Microparticles and nanoparticles for drug delivery. Biotechnolbioeng2007; 96(2):203-209.
97.    T.sudhamani et al., preparation and evaluation of ethyl cellulose microspheres of ibuprofen for sustained drug delivery, int.j.pharma research and development. 2010; 119-125.
98.    Zinutti c et al., Preparation and characterisation of ethyl cellulose microspheres containing 5- fluorouracil microencapsule, 1994; 11 (5):555- 563.
99.    Saini et al., Biotechnology: The novel drug delivery system. Int J Nutr Pharm Neuro Dis. 2011;1:82-3
100.    Y.N. Konan et al., Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles, Int. J. Pharm. 2002; 233:239–252.
101.     R. Singh et al., Nanoparticle-based targeted drug delivery.  Experimental and Molecular Pathology. 2009; 86: 215–223
102.    Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): method, characterization and applications. Int J Curr Pharm 2012; 1(1):384-93.
103.    Rajput N. Methods of preparation of nanoparticles–a review. Int J Adv Res Technol 2015;7:1806-11
104.    Sailaja K et al., Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm PharmSci 2011; 3(2):4550.
105.    Mehmood Y et al., Brain targeting drug delivery system: a review. Int J Basic Appl Med Sci 2015; 5:32-40.
106.    Kabanov, A.V. andH.E.Gendelman. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog. Polym. Sci. 2007; 32: 1054–1082.
107.    ViharGadhvi, Kachariya Brijesh, Amit Gupta, KomalRoopchandani, Nirav Patel. Nanoparticles for Brain Targeting. Research J. Pharm. and Tech. 6(5): May 2013; Page 454-458.
108.    Modi G et al., Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann NY AcadSci 2010; 1184:154-72.
109.    Agnihotri SA, Mallikarjuna NN and Aminabhavi TM: Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release 2004; 100:5-28
110.    Modi G et al., Nanotechnological applications for the treatment of neurodegenerative disorders. Progress in Neurobiology. 2009; 88(4):272–285

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available