Author(s): Stanekzai Azimullah, Sudhakar CK, Ashish M

Email(s): azimullah1984@gmail.com and Sudhakar.20477@lpu.co.in

DOI: 10.5958/0974-360X.2020.00359.5   

Address: Stanekzai Azimullah1, Sudhakar CK2, Ashish M2
1Assistant Professor at Kabul University, Faculty of Pharmacy, Department of Pharmaceutics.
2Assistant Professor at Lovely Institute of Technology (Pharmacy) School of Pharmaceutical Sciences Lovely Professional University Phagwara, Punjab.
*Corresponding Author

Published In:   Volume - 13,      Issue - 4,     Year - 2020


ABSTRACT:
Surfactant are surface-active agent, which reduce or lower the interface tension between two phase systems. Such concept were utilized in the drug delivery, surfactant vesicles (SV) niosomes. Niosomes are second generation of liposome which slightly different in composition of liposomes. Surfactant play significant role for noisome formation and utilization of different surfactant can possess different properties depending upon the surfactant such as bola surfactant, gemini surfactant. Bola surfactant niosomes have been used as topical for the treatment to skin cancer. Gemini based surfactant niosomes they are main comprised of amino acid-based surfactants and they have shown good penetration enhancer of drug into the skin. Gemini based niosomes able to delivery of anti-diabetics, chemotherapeutics, analgesic and antibiotics to treat different diseases. Surfactant vesicles are more prominent in delivering the drugs in controlled manner to skin through topical and transdermal route.


Cite this article:
Stanekzai Azimullah, Sudhakar CK, Ashish M. Recent Advance in Surfactant Vesicles Niosome for Delivery of Therapeutics and its Application. Research J. Pharm. and Tech. 2020; 13(4):1995-1999. doi: 10.5958/0974-360X.2020.00359.5


REFERENCES:
1.    Abdelbary, A. A., and Abou Ghaly, M. H. (2015). Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. International Journal of Pharmaceutics, 485(1-2), 235-243.
2.    Barry, B. W. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences, 14(2), 101-114.
3.    Behera, J., Keservani, R. K., Yadav, A., Tripathi, M., and Chadoker, A. (2010). Methoxsalen loaded chitosan coated microemulsion for effective treatment of psoriasis. International Journal of Drug Delivery, 2(2).
4.    Berba, J., Goranson, S., Langle, J., and Banakar, U. V. (1991). In vitro release of selected nonsteroidal antiinflammatory analgesics [NSAIA] from reservoir-type transdermal formulations. Drug Development and Industrial Pharmacy, 17(1), 55-65.
5.    Brain Facts, org. The Blood Brain Barrier, http://www.brainfacts. org/barinbasics/neuroanatomy/  articles/2014/blood brain barrier.
6.    Brewer, J. M., and Alexander, J. (1992). The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology, 75(4), 570.
7.    Chauhan, S., and Luorence, M. J. (1989). The preparation of polyoxyethylene containing non-ionic surfactant vesicles. J. Pharm. Pharmacol, 41(6).
8.    Cosco, D., Paolino, D., Muzzalupo, R., Celia, C., Citraro, R., Caponio, D., and Fresta, M. (2009). Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomedical Microdevices, 11(5), 1115.
9.    Date, A. A., Naik, B., and Nagarsenker, M. S. (2006). Novel drug delivery systems: potential in improving topical delivery of antiacne agents. Skin Pharmacology and Physiology, 19(1), 2-16.
10.    ElBayoumi, T. A., and Torchilin, V. P. (2009). Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clinical Cancer Research, 15(6), 1973-1980.
11.    Elhissi, A., Hidayat, K., Phoenix, D. A., Mwesigwa, E., Crean, S., Ahmed, W., and Taylor, K. M. (2013). Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. International Journal of Pharmaceutics, 444(1-2), 193-199.
12.    Renouf, P., Mioskowski, C., Lebeau, L., Hebrault, D., and Desmurs, J. R. (1998). Dimeric surfactants: first synthesis of an asymmetrical gemini compound. Tetrahedron Letters, 39(11), 1357-1360.
13.    Tracton, A. A. (2006). Coatings Materials and Surface Coatings. CRC Press.
14.    Paecharoenchai, O., Niyomtham, N., Ngawhirunpat, T., Rojanarata, T., Yingyongnarongkul, B. E., and Opanasopit, P. (2012). Cationic niosomes composed of spermine-based cationic lipids mediate high gene transfection efficiency. Journal of Drug Targeting, 20(9), 783-792.
15.    Zana, R., and Xia, J. (Eds.). (2003). Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications (Vol. 117). Crc Press.
16.    Schreier, H., and Bouwstra, J. (1994). Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. Journal of Controlled release, 30(1), 1-15.
17.    Thong, H. Y., Zhai, H., and Maibach, H. I. (2007). Percutaneous penetration enhancers: an overview. Skin Pharmacology and Physiology, 20(6), 272-282.
18.    Hamilton, A., Biganzoli, L., Coleman, R., Mauriac, L., Hennebert, P., Awada, A., and Bruning, P. (2002). EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene glycol liposomal doxorubicin (Caelyx®, Doxil®) at a 6-week interval in patients with metastatic breast cancer. Annals of oncology, 13(6), 910-918.
19.    Hamishehkar, H., Rahimpour, Y., and Kouhsoltani, M. (2013). Niosomes as a propitious carrier for topical drug delivery. Expert Opinion on Drug Delivery, 10(2), 261-272.
20.    Handjani‐Vila, R. M., Ribier, A., Rondot, B., and Vanlerberghie, G. (1979). Dispersions of lamellar phases of non‐ionic lipids in cosmetic products. International Journal of Cosmetic Science, 1(5), 303-314.
21.    Hashim, F., El-Ridy, M., Nasr, M., and Abdallah, Y. (2010). Preparation and characterization of niosomes containing ribavirin for liver targeting. Drug Delivery, 17(5), 282-287.
22.    Hassan, Y., Brewer, J. M., Alexander, J., and Jennings, R. (1996). Immune responses in mice induced by HSV-1 glycoproteins presented with ISCOMs or NISV delivery systems. Vaccine, 14(17-18), 1581-1589.
23.    Burakova, Y. (2018). Design of emulsion-based adjuvants for animal vaccines (Doctoral dissertation).
24.    Uchegbu, I. F., and Vyas, S. P. (1998). Non-ionic surfactant based vesicles (niosomes) in drug delivery. International Journal of Pharmaceutics, 172(1-2), 33-70.
25.    Jayaraman, S. C., Ramachandran, C., and Weiner, N. (1996). Topical delivery of erythromycin from various formulations: an in vivo hairless mouse study. Journal of Pharmaceutical Sciences, 85(10), 1082-1084.
26.    Yadav, K., Yadav, D., Saroha, K., Nanda, S., Mathur, P., and Syan, N. (2010). Proniosomal Gel: A provesicular approach for transdermal drug delivery. Der Pharmacia Lettre, 2(4), 189-198.
27.    Kumar PT, Mishra J, Podder A. Design, fabrication and evaluation of rosuvastatin Pharmac some-a novel sustained release drug delivery syste. Eur J Pharm Med Res 2016; 3:332-50.
28.    Kurmi, B. D., Kayat, J., Gajbhiye, V., Tekade, R. K., and Jain, N. K. (2010). Micro-and nanocarrier-mediated lung targeting. Expert Opinion on Drug Delivery, 7(7), 781-794.
29.    Maiti, S., Paul, S., Mondol, R., Ray, S., and SA, B. (2011). Nanovesicular formulation of brimonidine tartrate for the management of glaucoma: in vitro and in vivo evaluation. AAPS Pharm Sci Tech, 12(2), 755-763.
30.    Mezei, M., and Gulasekharam, V. (1980). Liposomes-a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sciences, 26(18), 1473-1477.
31.    Mohamedi, S. A., Brewer, J. M., Alexander, J., Heath, A. W., and Jennings, R. (2000). Antibody responses, cytokine levels and protection of mice immunised with HSV-2 antigens formulated into NISV or ISCOM delivery systems. Vaccine, 18(20), 2083-2094.
32.    Moser, P., Marchand-Arvier, M., and Labrude, P. (1989). Handjani Vila. RM and Vignerson C. Niosomes d'hémoglobine. I. Preparation, proprietes physicochimiques et oxyphoriques, stabilite. Pharma. Acta. Helv, 64(7), 192-202.
33.    Mukherjee, B., Patra, B., Layek, B., and Mukherjee, A. (2007). Sustained release of acyclovir from nano-liposomes and nano-niosomes: an in vitro study. International Journal of Nanomedicine, 2(2), 213.
34.    Nasr, M., Mansour, S., Mortada, N. D., and Elshamy, A. A. (2008). Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. Journal of Microencapsulation, 25(7), 499-512.
35.    O’Brien, M. E., Wigler, N., Inbar, M. C. B. C. S. G., Rosso, R., Grischke, E., Santoro, A. and Orlandi, F. (2004). Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Annals of Oncology, 15(3), 440-449.
36.    Obrenovic, M. M., Perrie, Y., and Gregoriadis, G. (1998). Entrapment of plasmid DNA into niosomes: characterization studies. Journal of Pharmacy and Pharmacology, 50(S9), 155-155.
37.    Oostendorp, R. L., Buckle, T., Lambert, G., Garrigue, J. S., Beijnen, J. H., Schellens, J. H., and van Tellingen, O. (2011). Paclitaxel in self-micro emulsifying formulations: oral bioavailability study in mice. Investigational New Drugs, 29(5), 768-776.
38.    Pandey, A., Mittal, A., Chauhan, N., and Alam, S. (2014). Role of surfactants as penetration enhancer in transdermal drug delivery system. J Mol Pharm Org Process Res, 2(113), 2-7.
39.    Chandu, V. P., Arunachalam, A., Jeganath, S., Yamini, K., Tharangini, K., and Chaitanya, G. (2012). Niosomes: a novel drug delivery system. International Journal of Novel Trends in Pharmaceutical Sciences, 2(1), 25-31.
40.    Agarwal, R., Katare, O. P., and Vyas, S. P. (2001). Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. International Journal of Pharmaceutics, 228(1-2), 43-52.
41.    Rastogi, S. K., and Singh, J. (2005). Effect of chemical penetration enhancer and iontophoresis on the in vitro percutaneous absorption enhancement of insulin through porcine epidermis. Pharmaceutical Development and Technology, 10(1), 97-104.
42.    Korting, H. C., and Schäfer-Korting, M. (2010). Carriers in the topical treatment of skin disease. In Drug delivery (pp. 435-468). Springer, Berlin, Heidelberg.
43.    Sezer, A. D. (2012). Recent Advances in Novel Drug Carrier systems.
44.    Suzuki, K., and Sakon, K. (1990). The application of liposomes to cosmetics. Cosmetics and Toiletries, 105(5), 65-78.
45.    Junyaprasert, V. B., Teeranachaideekul, V., and Supaperm, T. (2008). Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS Pharmscitech, 9(3), 851.
46.    Verma, D. D., Verma, S., Blume, G., and Fahr, A. (2003). Particle size of liposomes influences dermal delivery of substances into skin. International Journal of Pharmaceutics, 258(1-2), 141-151.
47.    Yoshioka, T., Skalko, N., Gursel, M., Gregoriadis, G., and Florence, A. T. (1995). A non-ionic surfactant vesicle-in-water-in-oil (v/w/o) system: potential uses in drug and vaccine delivery. Journal of Drug Targeting, 2(6), 533-539.
48.    Bayindir, Z. S., Beşikci, A., and Yüksel, N. (2015). Paclitaxel-loaded niosomes for intravenous administration: pharmacokinetics and tissue distribution in rats. Turkish Journal of Medical Sciences, 45(6), 1403-1412.

Recomonded Articles:

Author(s): Niharika, Navneet Verma

DOI: 10.5958/0974-360X.2016.00182.7         Access: Open Access Read More

Author(s): Ravindranath S. Misal, Vishawas R. Potphode, Vijay R. Mahajan

DOI: 10.5958/0974-360X.2017.00218.9         Access: Open Access Read More

Author(s): R. Narayana Charyulu, P. Parvathy Devi, Jobin Jose, A. Veena Shetty

DOI: Not Available         Access: Open Access Read More

Author(s): Meenakshi K, Safa M, Karthick T, Sivaranjani N

DOI: 10.5958/0974-360X.2017.00253.0         Access: Open Access Read More

Author(s): Mistry Khushboo, Kavya Naik, Vasanthi, Alicia Menezes, Anup Naha, K.B. Koteshwara, K. Girish Pai

DOI: 10.5958/0974-360X.2017.00540.6         Access: Open Access Read More

Author(s): Kumkum Sarangdevot, Bhawani Singh Sonigara, Amul Mishra, K. C. Gupta, Surbhi Sharma

DOI: Not Available         Access: Open Access Read More

Author(s): Archana Kushwaha, Jayanti Jaiswal, Priya Singh, Neha Rathore, Jai Prakash Dhruw, Ishu Sahu, Chhaya Singh, Krinsha Kumar Sahu, Mukta Agrawal, D. K. Tripathi, Ajazuddin, Amit Alexander

DOI: 10.5958/0974-360X.2017.00270.0         Access: Open Access Read More

Author(s): Young Mi Ryu, Myungsun Yi

DOI: 10.5958/0974-360X.2017.00421.8         Access: Open Access Read More

Author(s): Homendra Kumar Sahu, Kamdev Sen, Raju Patel, Hulash Sahu, Deepika Sahu, Gulshan Sahu, Chandrashekhar Jain, Narayan Prasad Chandra, Mukta Agrawal, D. K. Tripathi, Ajazuddin, Amit Alexander

DOI: 10.5958/0974-360X.2017.00173.1         Access: Open Access Read More

Author(s): Mahanthesh M.C., Girendra Gautam, Jalalpure S.S.

DOI: 10.5958/0974-360X.2017.00250.5         Access: Open Access Read More

Author(s): YK Naidu, Raghunadha Reddy S, Koteswara Rao Divi, MP Kalyan Reddy, I Sarath Chandiran, KN Jayaveera

DOI: Not Available         Access: Open Access Read More

Author(s): Naveen M.R., Santhosh Y.L., Satish Kumar B.P

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 


Recent Articles




Tags