Author(s):
Erizal Zaini, Delfi Riska, Maria Dona Oktavia, Friardi Ismed, Lili Fitriani
Email(s):
erizal@phar.unand.ac.id
DOI:
10.5958/0974-360X.2020.00347.9
Address:
Erizal Zaini1, Delfi Riska2, Maria Dona Oktavia2, Friardi Ismed3, Lili Fitriani1
1Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang, Indonesia.
2Sekolah Tinggi Ilmu Farmasi (STIFARM), Padang, Indonesia.
3Laboratory of Biota Sumatera and Faculty of Pharmacy, Andalas University, Padang, Indonesia.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2020
ABSTRACT:
Piperine, a secondary metabolite of Piper nigrum L., has been known for its pharmacological activities. However, the use of piperine is still limited due to the low solubility in water. The aim of this study was to improve the physicochemical properties of piperine by preparing into multicomponent crystal (MC) using saccharin by solvent evaporation method, and ethanol was used as the solvent. The intact materials and MC were characterized by several solid-state instruments. The amount of dissolved piperine was determined by High Performance of Liquid Chromatography (HPLC) using acetonitrile: water (90:10) as the mobile phase. Both morphology of intact piperine and MC showed irregular crystals. The diffractogram showed that MC had new and specific peaks at 2O: 12.91, 15.04, 19.54 and 22.40. The thermogram presented melting point for intact piperine, saccharin and MC which were 132.81°C, 230.02°C, 197.09°C, respectively. The infra-red spectrum showed no significant shift of MC which indicated no chemical interaction between piperine and saccharin. The dissolution study pointed higher amount of piperine dissolved in 0.1 N HCl with addition of 0.5% sodium lauryl sulphate. The dissolution piperine in MC after 60 minutes was 81.29±5.91%, while intact piperine was 44.78±1.89%. In conclusion, the formation of multicomponent crystal of piperine-saccharin was able to increase the dissolution of piperine.
Cite this article:
Erizal Zaini, Delfi Riska, Maria Dona Oktavia, Friardi Ismed, Lili Fitriani. Improving Dissolution Rate of Piperine by Multicomponent Crystal Formation with Saccharin. Research J. Pharm. and Tech. 2020; 13(4):1926-1930. doi: 10.5958/0974-360X.2020.00347.9
Cite(Electronic):
Erizal Zaini, Delfi Riska, Maria Dona Oktavia, Friardi Ismed, Lili Fitriani. Improving Dissolution Rate of Piperine by Multicomponent Crystal Formation with Saccharin. Research J. Pharm. and Tech. 2020; 13(4):1926-1930. doi: 10.5958/0974-360X.2020.00347.9 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-4-57
REFERENCES:
1. Rukmana R. Usaha Tani Lada Perdu. Indonesia: Kanisius; 2003.
2. Agarwal OP. Chemistry of Organic Natural Products. Meerut, India: Goel Publishing House; 2010.
3. Thakur R, Meena AK, Dixit AK, Joshi S. A Review on Different Sources of Piper nigrum L. Adulterants. Res J Pharm Technol. 2018;11(9):4173-4178.
4. Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine—The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr Rev Food Sci Food Saf. 2017;26(2):162-168.
5. Ghiware NB, Nesari TM. Antipyretic Activity of Piper nigrum and Nyctanthes arbor-tristis in Different Dosage Forms. Res J Pharm Technol. 2010;3(1):157-160.
6. Prabhu A, Chembili V, Kandal T, Punchappady-Devasya R. Piper nigrum seeds inhibit biofilm formation in Pseudomonas aeruginosa strains. Res J Pharm Technol. 2017;10(11):3894-3898.
7. Nandakumar S, Kumar MGS, Bini B, Krishnan GG. Antimicrobial activity of selected medicinal plants against oral microflora. Res J Pharm Technol. 2016;9(12):2271.
8. Mokkapati A, Nagumantri RK, Pydi CB, Chintala R, Rentala S. Docking Studies of Piperine-Vitamin a Conjugate to Study the Increase in Bioavailability of Vitamin A. Res J Pharm Technol. 2017;10(7):2189-2193.
9. Devi UP, Surendran S, Babu M, Joseph J. Beneficial Interaction of Piperine with Sodium Valproate against maximal Electroshock induced Seizures in Mice. Res J Pharm Technol. 2017; 10(11):3967-3968.
10. Sharma A, Jain CP, Ashawat MS. Biopharmaceutics classification system (BCS) and biowaivers: role in drug product design. Res J Pharm Technol. 2008;1(3):144-151.
11. Ezawa T, Inoue Y, Murata I, Takao K, Sugita Y KI. Characterization of the Dissolution Behavior of Piperine/ Cyclodextrins Inclusion Complexes. AAPS Pharm Sci Tech. 2018;19(2):923-933.
12. Yusuf M, Khan M, Khan RA, Ahmed B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target. 2013;21(3):300-311.
13. Alomrani AH, Alhazza FI, AlGhamdi KM, El Maghraby GM. Effect of neat and binary vehicle systems on the solubility and cutaneous delivery of piperine. Saudi Pharm J. 2018;26(2):162-168.
14. Pachauri M, Gupta ED, Ghosh PC. Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J Drug Deliv Sci Technol. 2015;29:269-282.
15. Priprem A, Chonpathompikunlert P, Sutthiparinyanont S, Wattanathorn J. Antidepressant and cognitive activities of intranasal piperine-encapsulated liposomes. Adv Biosci Biotechnol. 2011;2(02):108-116.
16. Ashour EA, Majumdar S, Alsheteli A, et al. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol. 2016;68(8):989-998.
17. Weyna DR, Cheney ML, Shan N, et al. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharm. 2012;9(7):2094-2102.
18. Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Cryst Growth Des. 2016;16(6):3237-3243.
19. Setyawan D, Permata SA, Zainul A, Maria LAD, Lestari. Improvement in vitro Dissolution Rate of Quercetin Using Cocrystallization of Quercetin-Malonic Acid. Indones J Chem. 2018;18(3):531-536.
20. Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm. 2016;497(1-2):106-113.
21. Putra OD, Umeda D, Nugraha YP, Nango K, Yonemochi E, Uekusa H. Simultaneous Improvement of Epalrestat Photostability and Solubility via Cocrystallization: A Case Study. Cryst Growth Des. 2018;18(1):373-379.
22. Yuliandra Y, Zaini E, Syofyan S, et al. Cocrystal of ibuprofen–nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation. Sci Pharm. 2018;86(2):23-34.
23. Samineni R, Chimakurthy J, Sumalatha K, et al. Co-Crystals: A Review of Recent Trends in Co Crystallization of BCS Class II Drugs. Res J Pharm Technol. 2019;12(7):3117-3124.
24. Zaini E, Sumirtapura YC, Soewandhi SN, Halim A, Uekusa H, Fujii K. Cocrystalline phase transformation of binary mixture of trimethoprim and sulfamethoxazole by slurry technique. Asian J Pharm Clin Res. 2010;3(4):26-29.
25. Muddukrishna BS, Bhat K, Shenoy GG. Preparation and solid state characterization of paclitaxel cocrystals. Res J Pharm Technol. 2014;7(1):6.
26. Sudhakar P, Kumar SV, Vishweshwar P, Babu JM, Vyas K. Solid state structural studies of saccharin salts with some heterocyclic bases. CrystEngComm. 2008;10(8):996-1002.
27. Khajuria A, Zutshi U, Bedi KL. Permeability characteristics of piperine on oral absorption - An active alkaloid from peppers and a bioavailability enhancer. Indian J Exp Biol. 1998;36:46-50.
28. Perumalla SR, Pedireddi VR, Sun CC. Design, synthesis, and characterization of new 5-fluorocytosine salts. Mol Pharm. 2013;10(6):2462-2466.
29. Cruz-Cabeza AJ. Acid–base crystalline complexes and the pKa rule. CrystEngComm. 2012;14(20):6362-6365.
30. Childs SL, Stahly GP, Park A. The salt-cocrystal continuum: The influence of crystal structure on ionization state. Mol Pharm. 2007;4(3):323-338.
31. Dwichandra Putra O, Yonemochi E, Uekusa H. Isostructural Multicomponent Gliclazide Crystals with Improved Solubility. Cryst Growth Des. 2016;16(11):6568-6573.
32. Suhesti TS, Fudholi A, Martien R, Martono S. Pharmaceutical nanoparticle technologies: An approach to improve drug solubility and dissolution rate of Piroxicam. Res J Pharm Technol. 2017;10(4):968.
33. Putra OD, Umeda D, Fujita E, et al. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics. 2018;10(2):64-76.
34. Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: Along the path to improved medicines. Chem Commun. 2016;52(4):640-655.
35. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007. doi:10.1016/j.addr.2007.05.010
36. Ainurofiq A, Mauludin R, Mudhakir D, et al. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018;111:65-72.
37. Nugrahani I, Utami D, Ibrahim S, Nugraha YP, Uekusa H. Zwitterionic cocrystal of diclofenac and L-proline: Structure determination, solubility, kinetics of cocrystallization, and stability study. Eur J Pharm Sci. 2018;117:185-176.