Author(s):
S. Gupta, A. M. Shaikh, B. Mohanty, P. Chaudhari, P. B. Parab, K. G. Apte
Email(s):
shrutiguptashruti70@gmail.com
DOI:
10.5958/0974-360X.2020.00325.X
Address:
S. Gupta1, A. M. Shaikh2, B. Mohanty3, P. Chaudhari4, P. B. Parab5, K. G. Apte6
1,6APT Research Foundation, Pune, 411041.
2Faculty of Health and Biomedical Sciences, Symbiosis International University, Pune, 412115.
3AAEMF’S Delight College of Pharmacy, Pune, 412216, India.
4,5Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2020
ABSTRACT:
Sesbania grandiflora (SG), an Indian herbal drug has been traditionally employed to treat or prevent female related hormonal disorders and mitigating symptoms of menopausal conditions. The present study assessed the antiosteoporotic potential of the aqueous extract of Sesbania grandiflora on bone metabolism in ovariectomised (OVX) rat model and its safety in the uterus. Thirty Sprague-Dawley 6 months old female rats were randomly divided into 5 groups: Sham operated group and four OVX subgroups (n=6), that were undergone bilateral ovariectomy. OVX rats were further subdivided into vehicle, raloxifene 5.4mg/kg/day, Sesbania grandiflora aqueous leaf extracts–250mg/kg/day and 500mg/kg/day respectively. The pharmacological effects of the extract were evaluated against osteoporosis by body weight, uterus wet weight, serum and urine biochemical parameters, bone mineral density, biomechanical strength, trabecular microarchitecture, histomorphology and uterus immunohistochemistry. Daily oral administration of aqueous leaf extract significantly assuages the symptoms of ovariectomy as shown by decreased levels of serum ALP, TRAP, hydroxyproline and urinary calcium in the treatment groups. Moreover, improved femur parameters were seen as increased bone strength, BMD, trabecular bone mass and microarchitecture similar to raloxifene. Histopathological data also showed significant restorative progression with increased ossification and mineralization of trabecular bone, without uterine hypertrophy. The results suggests that Sesbania grandiflora had a remarkable antiosteoporotic activity and may be a promising candidate for treatment of postmenopausal osteoporosis induced by estrogen deficiency in a natural way through herbal resources.
Cite this article:
S. Gupta, A. M. Shaikh, B. Mohanty, P. Chaudhari, P. B. Parab, K. G. Apte. Evaluation of Antiosteoporotic potential of Sesbania grandiflora Linn. aqueous fraction in Ovariectomised Rats. Research J. Pharm. and Tech. 2020; 13(4):1804-1812. doi: 10.5958/0974-360X.2020.00325.X
Cite(Electronic):
S. Gupta, A. M. Shaikh, B. Mohanty, P. Chaudhari, P. B. Parab, K. G. Apte. Evaluation of Antiosteoporotic potential of Sesbania grandiflora Linn. aqueous fraction in Ovariectomised Rats. Research J. Pharm. and Tech. 2020; 13(4):1804-1812. doi: 10.5958/0974-360X.2020.00325.X Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-4-35
REFERENCES:
1. Kanis JA, Mccloskey E V, Johansson H, Oden A, Melton LJ, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008; 42:467-475. doi: 10.1016/j.bone.2007.11.001
2. An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 2016;147: 46-58. doi: 10.1016/j.lfs.2016.01.024
3. Li F, Yang X, Yang Y, et al. Antiosteoporotic activity of echinacoside in ovariectomized rats. Phytomedicine. 2013;20(6):549-557. doi: 10.1016/j.phymed.2013.01.001
4. Wanjari AS, Wanjari DS. An Overview on Herbal Medicine. Res J Pharmacogn Phytochem. 2019;11(1):14-17.
5. Bacciottini L, Falchetti A, Pampaloni B, Bartolini E, Carossino AM, Brandi ML. Phytoestrogens: food or drug? Clin Cases Miner Bone Metab. 2007;4(2):123-130.
6. Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987;138(3):775-779. doi:10.1007/ Springer Reference_33601
7. Nadkarni K. Indian-Materia-Medica-. vol I. Mumbai: Popular Prakashan; 1982.
8. Moutsatsou P. The spectrum of phytoestrogens in nature: our knowledge is expanding. Hormones (Athens). 2007;6(3):173-193. doi:173–93
9. Loganayaki N, Suganya N, Manian S. Evaluation of edible flowers of agathi (Sesbania grandiflora L. Fabaceae) for in vivo anti-inflammatory and analgesic, and in vitro antioxidant potential. Food Sci Biotechnol. 2012;21(2):509-517. doi:10.1007/s10068-012-0065-6
10. Ganesan K, Nair SKP, Sinaga M, Gani SB. A Review on The Phytoconstituents And Pharmacological Actions In The Medicinal Plants Of Bedabuna Forest, Jimma Zone, South West Ethiopia Reported Effect On Experimental Models. Eur J Biomed Pharm Sci. 2016;3(1):62-83.
11. Veerapur VP, Desai PP, Vijayakumar S. Pharmacognostic and Preliminary Phytochemical Screening of Sesbania grandiflora root. Res J Pharmacogn Phytochem. 2018;10(4):285-290.
12. Naik H V., Chavan N, Deshmukh HA, Chaskar PK, More NS. Study of Antiulcer Activity of Leaves of Sesbania grandiflora Linn. (Fabaceae). Res J Pharmacogn Phytochem Vol. 2012; 4(6):322-325.
13. Kumar AS, Mazumder A, Vanitha J, Ganesh M, Saravanan VS, Sivakumar T. Antibacterial Activity of Methanolic Extract of Sesbani Grandiflora (Fabaceae). Res J Pharm Technol. 2008;1(1):59-60.
14. Roy A, Bhoumik D, Sahu RK, Dwivedi J. Phytochemical Screening and Antioxidant Activity of Sesbania grandiflora Leaves Extracts. Asian J Res Pharm Sci Vol. 2014;4(1):16-21.
15. Poojashree, Roy A. In-vitro Antibacterial activity of Ethyl Acetate extract of Sesbania grandiflora leaf against E. faecalis – A root Canal threat. Res J Pharm Technol. 2016;9(12):2147-2149.
16. Lakshmi T, Sripradha. In vitro Anti- Arthritic activity of Sesbania grandiflora Ethyl acetate extract. Res J Pharm Technol. 2015;8(11):1509-1511.
17. Kumar AS, Ramaswamy NM. Anti-Inflammatory activity of Sesbania Grandiflora (Fabaceae). Res J Pharm Technol. 2009; 2(1): 214-215.
18. Xie F, Wu C, Lai W, et al. The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. eCAM. 2005;2(3):353-361. doi:10.1093/ecam/neh101
19. Seal T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J Appl Pharm Sci. 2016;6(2):157-166. doi:10.7324/JAPS.2016.60225
20. Shen Y, Li YQ, Li SP, Ma L, Ding LJ, Ji H. Alleviation of ovariectomy-induced osteoporosis in rats by Panax notoginseng saponins. J Nat Med. 2010;64(3):336-345. doi:10.1007/s11418-010-0416-7
21. Zhao X, Wu Z-X, Zhang Y, et al. Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats. J Ethnopharmacol. 2011; 137:1083– 1088. doi: doi: 10.1016/j.jep.2011.07.017
22. Shirwaikar A, Khan S, Malini S. Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J Ethnopharmacol. 2003; 89(2-3):245-250. doi:10.1016/j.jep.2003.08.004
23. Leboime A, Confavreux CB, Mehsen N, Paccou J, David C, Roux C. Osteoporosis and mortality. Jt Bone Spine. 2010;77: 107-112.
24. Sakat BT, Sakhare RB, Suryvanshi UC, Kore PS, Mohite SK, Magdum CS. Osteoporosis: The Brittle Bone. Asian J Pharm Res. 2018;8(1):39-43.
25. Lindsay R, Silverman SL, Cooper C, et al. Risk of New Vertebral Fracture. JAMA. 2001;285: 320-323.
26. Li F, Yang X, Bi J, Yang Z, Zhang C. Antiosteoporotic activity of Du–Zhong–Wan water extract in ovariectomized rats. Pharm Biol. 2016;54(9):1857-1864. doi:10.3109/13880209.2015.1133657
27. Weerachayaphorn J, Chuncharunee A, Mahagita C, Lewchalermwongse B, Suksamrarn A, Piyachaturawat P. A protective effect of Curcuma comosa Roxb . on bone loss in estrogen deficient mice. J Ethnopharmacol. 2011; 137:956-962. doi:10.1016/j.jep.2011.06.040
28. Imai Y, Kondoh S, Alexander K, Kato S. Minireview: Osteoprotective Action of Estrogens Is Mediated by Osteoclastic Estrogen Receptor-alpha. Mol Endocrinol. 2010;24(5):877-885. doi:10.1210/me.2009-0238
29. Mcgriff-lee N, Kalantaridou SN, Pucino F, Calis KA. Effects of Androgens on Bone in Men and Women. Clin Rev Bone Miner Metab. 2005;3(1):51-66.
30. Jilka RL. Cytokines, Bone Remodeling, and Estrogen Deficiency: A 1998 Update. Bone. 1998;23(2):75-81.
31. Burguera B, Hofbauer LC, Thomas T, et al. Leptin Reduces Ovariectomy-Induced Bone Loss in Rats. Endocrinology. 2001;142(8):3546-3553.
32. Joyner JM, Hutley LJ, Cameron DP. Estrogen Receptors in Human Preadipocytes. Endocrine. 2001;15(2):225-230.
33. Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int J Obes. 2001;25: 1680-1688.
34. Park JA, Keun S, Ho T, et al. Protective effect of apigenin on ovariectomy-induced bone loss in rats. Life Sci. 2008;82: 1217-1223. doi: 10.1016/j.lfs.2008.03.021
35. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Vaananen HK. Tartrate-Resistant Acid Phosphatase 5b : A Novel Serum Marker of Bone Resorption. J Bone Miner Res. 2000;15(7):1337-1345.
36. Kim H, Cui Y, Hong S, et al. Effect of Ginseng Mixture on Osteoporosis in. Immunopharmacol Immunotoxicol. 2008; 30:333-345. doi:10.1080/08923970801949125
37. Suman V, Pratik Kumar C, Vinodini N, Kunal K, Megha G, Ramesh M B. Effect of variable Diet and Physical Activity on Bone Mineral Density in Adults using Peripheral–Dexa Scan. Res J Pharm Technol. 2018;11(6):2404-2407.
38. Snyder BD, Piazza S, Edwards WT, Hayes WC. Role of Trabecular Morphology in the Etiology of Age-Related Vertebral Fractures. Calcif Tissue Int. 1993; 53:14-22.
39. Sran MM, Boyd SK, Cooper DML, Khan KM, Zernicke RF, Oxland TR. Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture. Bone. 2007;40: 751-757. doi: 10.1016/j.bone.2006.10.003
40. Thummuri D, Jeengar M, Shrivastava S, et al. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res. 2015: 1-8. doi:http://dx.doi.org/10.1016/j.phrs.2015.05.006
41. Qi W, Yan Y., Lei W, et al. Prevention of disuse osteoporosis in rats by Cordyceps sinensis extract. Osteoporos Int. 2012; 23:2347-2357. doi:10.1007/s00198-011-1842-4
42. Chiechi LM, Micheli L. Utility of Dietary Phytoestrogen in preventing Postmenopausal Osteoporosis. Curr Top Nutraceutical Res. 2005;3(1):15-28.
43. Mustafa RA, Hamid AA, Mohamed S, Bakar FA. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J Food Sci. 2010;75(1). doi:10.1111/j.1750-3841.2009. 01401. x
44. Wattel A, Kamel S, Prouillet C, et al. Flavonoid Quercetin Decreases Osteoclastic Differentiation Induced by RANKL via a Mechanism Involving NF k B and AP-1. J Cell Biochem. 2004;92: 285-295. doi:10.1002/jcb.20071
45. Tsuji M, Yamamoto H, Sato T, et al. Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J Bone Min Metab. 2009;27: 673-681. doi:10.1007/s00774-009-0088-0
46. Choi E-M, Hwang J-K. Effects of (+)-catechin on the function of osteoblastic cells. Biol Pharm Bull. 2003;26(4):523-526. http://www.ncbi.nlm.nih.gov/pubmed/12673036.