Author(s): Retno Murwanti, Eva Kholifah, B. S. Ari Sudarmanto, Adam Hermawan

Email(s): retno_murwanti@ugm.ac.id

DOI: 10.5958/0974-360X.2020.00309.1   

Address: Retno Murwanti1, Eva Kholifah2, B. S. Ari Sudarmanto3, Adam Hermawan3
1Department of Pharmacology and Clinic, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia.
2Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281.
3Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia.
*Corresponding Author

Published In:   Volume - 13,      Issue - 4,     Year - 2020


ABSTRACT:
Curcumin, the yellow pigment isolated from turmeric has been reported to suppress migration through inhibition of ß-catenin and GSK-3ß, which is activated in metastasis breast cancer. However, the effects of its analog pentagamavunon-1 (PGV-1) on the Wnt/ß-catenin pathway have not been investigated. This present study aims to determine the effect of curcumin and its analog to inhibition of breast cancer cell migration. Step of procedure was cultured 4T1 cell and simulation in silico study. This study showed that PGV-1 suppressed migration of 4T1 breast cancer cell. Besides, molecular docking study revealed that curcumin showed interaction with Asn516 and PGV-1 interact with His470, Asn430, and Lys435 of ß-catenin active site. Moreover, curcumin interacts with GSK-3ß at Phe67, Asp 90 and Glu97 while PGV-1 interact at Asp200. Thus, our findings suggest that curcumin and PGV-1 inhibit migration of 4T1 breast cancer by modulating the interaction with ß-catenin and GSK-3ß.


Cite this article:
Retno Murwanti, Eva Kholifah, B. S. Ari Sudarmanto, Adam Hermawan. Curcumin and its Analogue Targeting β-Catenin and GSK-3β in Wnt Signaling Pathways: In Vitro and In Silico Study. Research J. Pharm. and Tech. 2020; 13(4):1715-1719. doi: 10.5958/0974-360X.2020.00309.1

Cite(Electronic):
Retno Murwanti, Eva Kholifah, B. S. Ari Sudarmanto, Adam Hermawan. Curcumin and its Analogue Targeting β-Catenin and GSK-3β in Wnt Signaling Pathways: In Vitro and In Silico Study. Research J. Pharm. and Tech. 2020; 13(4):1715-1719. doi: 10.5958/0974-360X.2020.00309.1   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-4-19




REFERENCES:

1.     Satapathy, A. and Rao, M. V. Protective effect of Curcumin on 2, 4- Dichlorophenoxy acetic acid exerted Hepatotoxicity in Mice. Research Journal of Pharmacy and Technology. 2018; 11: 637–642.

2.     Zhu, Y. and Bu, S. Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells. Evidence-Based Complementary and Alternative Medicine. 2017; 1–13.

3.     Xia. Curcumin Analogue A501 induces G2/M Arrest and Apoptosis in Non-small Cell Lung Cancer Cells. Asian Pacific Journal of Cancer Prevention. 2014; 15: 6893–6898.

4.     Lee, D. S., Lee, M. K. and Kim, J. H. Curcumin Induces Cell Cycle Arrest and Apoptosis in Human Osteosarcoma (HOS) Cells. Anticancer Res. 2019; 29: 5039–5044.

5.     Ertanto, Y., Utomo, R. Y., Jenie, R. I., Susidarti, R. A. and Meiyanto, E. Anti-metastatic effect of curcumin analog pentagamaboronon-0-fructose (PGB-0-F) against 4T1 breast cancer cells. Indonesian Journal of Biotechnology. 2019; 23.

6.     Kunnumakkara, A. B., Anand, P. and Aggarwal, B. B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Letters. 2008; 269; 199–225.

7.     Saha, S., Roy, A., Bahadur, S. and Choudhury, A. Bioenhamcement of Curcumin by Dual approach. Research Journal of Pharmacy and Technology. 2016; 9: 1059–1063.

8.     Sardjiman, S. S., Reksohadiprodjo, M. S., Hakim, L., van der Goot, H. and Timmerman, H. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. European Journal of Medicinal Chemistry. 1997; 32: 625–630.

9.     Francis, S. P. and Srinivasan, M. Enhancing the Bioavailability of a Natural Product Curcumin to increase the Therapeutic Efficacy by a Novel Formulation Technology. Research Journal of Pharmacy and Technology. 2019; 12: 2615–2620.

10. Samanta, A., Roy, A. and Majumdar, M. Study of Various Formulations for Enhancement of Systemic Bioavailability of Curcumin. Research Journal of Pharmacy and Technology. 2018; 11: 661–666.

11. Meiyanto, E., Septisetyani, E. P., Larasati, Y. A. and Kawaichi, M. Curcumin Analog Pentagamavunon-1 (PGV-1) Sensitizes Widr Cells to 5-Fluorouracil through Inhibition of NF-κB Activation. Asian Pac J Cancer Prev. 2018; 19: 49–56.

12. Meiyanto, E., Agustina, D., Am, S. and Da’i, M. PGV-O Induces Apoptosis On T47D Breast Cancer Cell Line Through Caspase-3 Activation. Kedokteran Yarsi Jurnal. 2007; 15(2): 075-079.

13. Hariramani, N. and Jayanthi, S. A Systematic Review of Intrinsic Factors and its Influence in Breast Cancer. Research Journal of Pharmacy and Technology. 2018; 11: 3543–3546.

14. Akshata Desai, K. A. Triple Negative Breast Cancer – An Overview. Hereditary Genetics. 2012; 10.

15. Aziz, M. F. Gynecological cancer in Indonesia. J Gynecol Oncol. 2009; 20: 8–10.

16. Eldhose, E., Gowramma, B., Mohammed, M., Kalirajan, R. and Kaviarasan, L. Translational Chemotherapy for triple negative Breast Cancer - A Review on significance of poly (ADP-ribose) polymerase 1 (PARP 1) inhibitors. Research Journal of Pharmacy and Technology. 2019; 12: 3098–3104.

17. Almuradova, D. M. The Role of Chemotherapy in Triple Negative Breast Cancer. Orthoplastic Surgery and Orthopedic Care International Journal. 2018; 2: 5.

18. Eldhose, E., Gowramma, B., Mohammed, M., Kalirajan, R. and Kaviarasan, L. Translational Chemotherapy for triple negative Breast Cancer - A Review on significance of poly (ADP-ribose) polymerase 1 (PARP 1) inhibitors. Research Journal of Pharmacy and Technology. 2019; 12: 3098–3104.

19. Penault-Llorca, F. and Radosevic-Robin, N. Biomarkers of residual disease after neoadjuvant therapy for breast cancer. Nat Rev Clin Oncol. 2016; 13: 487–503.

20. Jayashree, V. and Velraj, M. Breast Cancer and various Prognostic Biomarkers for the diagnosis of the disease: A Review. Research Journal of Pharmacy and Technology. 2017; 10: 3211–3216.

21. Herbst, A. and Kolligs, F. T. Wnt signaling as a therapeutic target for cancer. Methods Mol. Biol. 2007; 361: 63–91.

22. Aloss, K., Jdeed, S. and Alshehabi, Z. Detecting the role of CCR7-CCL21/CCL19 axis in Breast Cancer Progression and lymph node Metastasis Incidence. Research Journal of Pharmacy and Technology. 2018; 11: 231–235.

23. Bravo-Cordero, J. J., Hodgson, L. and Condeelis, J. Directed Cell Invasion and Migration During Metastasis. National Institut Of Health. 2018; 24(2): 277–283.

24. Ahmad, A. and Hart, I. R. Mechanisms of metastasis. Critical Reviews in Oncology / Hematology. 1997; 26: 163–173.

25. Baczynska, D., Bombik, I. and Malicka-Błaszkiewicz, M. β-Catenin Expression Regulates Cell Migration of Human Colonic Adenocarcinoma Cells Through Gelsolin. AR. 2016; 36: 5249–5256.

26. Hafeez, Bilal, Ganju, A. and Sikander, Mohammed. Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic Phenotypes via Inhibition of Oncogenic b-catenin Signaling and EMT Progression. molecular cancer therapeutic.2017; 17: 1533-7163.

27. Tan, C., Gardiner, B. S., Hirokawa, Y., Smith, D. W. and Burgess, A. W. Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells. BMC Syst Biol. 2014; 8: 44.

28. Yamaguchi, H., Wyckoff, J. and Condeelis, J. Cell migration in tumors. Current Opinion in Cell Biology 17, 559–564 (2005).

29. Dou, H. et al. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. Front. Pharmacol. 2017; 8.

30. Karthika, C. et al. Formulation Development and In vitro Characterization of Solid Self Nano Emulsifying Drug Delivery System for Curcumin to Target Colon Adenocarcinoma. Research Journal of Pharmacy and Technology. 2019; 12: 3338–3346.

31. Kollipara, R. K., Tallapaneni, V., Sanapalli, B. K. R., G, V. K. and Karri, V. V. S. R. Curcumin Loaded Ethosomal Vesicular Drug Delivery System for the Treatment of Melanoma Skin Cancer. Research Journal of Pharmacy and Technology. 2019; 12: 1783–1792.

32. Kim, H. J., Park, S. Y., Park, O. J. and Kim, Y.-M. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Molecular Medicine Reports. 2013; 8: 282–286.

33. Mukherjee, S. et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Research and Therapy. 2014; 5: 116.

34. Morgan, R. et al. Chapter 20 - Wnt Signaling as a Therapeutic Target in Cancer and Metastasis. Introduction to Cancer Metastasis. 2017; 375–394.

35. Zhan, T., Rindtorff, N. and Boutros, M. Wnt signaling in cancer. Oncogene. 2017; 36: 1461–1473.

36. Ormanns, S., Neumann, J., Horst, D., Kirchner, T. and Jung, A. WNT signaling and distant metastasis in colon cancer through transcriptional activity of nuclear β-Catenin depend on active PI3K signaling. Oncotarget; 2014; 5: 2999–3011.

37. He, M. et al. Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncology Reports. 2014; 32: 173–180.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available