Author(s): Dinesh Sangarran Ramachandram, V. Chitra, Rini. R

Email(s): rininannat95@gmail.com

DOI: 10.5958/0974-360X.2020.00302.9   

Address: Dinesh Sangarran Ramachandram, V. Chitra, Rini. R
Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpet- 603203.
*Corresponding Author

Published In:   Volume - 13,      Issue - 4,     Year - 2020


ABSTRACT:
Angiogenesis is the migration of endothelial cells to form new blood vessels at sites of tissue regeneration or growth. Its effects are readily apparent in diseases such as cancer, where the tumor can be given with an internal blood supply and become highly vascularized, aiding in its growth and metastatic potential. Given this, we sought to evaluate the anti-angiogenic effect of a natural herb formulation from Tanacetum parthenium (the feverfew plant), as compared to amlodipine, a United States FDA approved calcium channel blocker. The anti-angiogenic activity of amlodipine and Tanacetum parthenium were evaluated in vitro using a chick embryo chorioallantoic membrane (CAM) assay. Chick embryos were treated with each respective substance at 10-4, 10-5, and10-6 M for various time intervals. Anti-angiogenic scoring was conducted for Tanacetum parthenium and amlodipine by analyzing the treated embryos with semi-quantitative rankings. According to the results both Tanacetum parthenium and amlodipine significantly decreased the formation of new blood vessels when compared to control treatments. We believe that anti-angiogenic properties within the herbal supplement were due to the abundance of parthenolides as a main chemical constituent. Anti-oxidant and cytotoxic activities were further evaluated to determine the anti-cancer potential of parthenolides. These results suggest that amlodipine and Tanacetum parthenium have anti-angiogenic activity. Thus, both of these drugs may be used as a potential source for protection against cancer.


Cite this article:
Dinesh Sangarran Ramachandram, V. Chitra, Rini. R. Correlation of Anti-oxidant, Anti-angiogenic, and Cytotoxic activity of Tanacetum parthenium compared with Amlodipine using Chorioallantoic membrane Assay. Research J. Pharm. and Tech. 2020; 13(4):1665-1671. doi: 10.5958/0974-360X.2020.00302.9

Cite(Electronic):
Dinesh Sangarran Ramachandram, V. Chitra, Rini. R. Correlation of Anti-oxidant, Anti-angiogenic, and Cytotoxic activity of Tanacetum parthenium compared with Amlodipine using Chorioallantoic membrane Assay. Research J. Pharm. and Tech. 2020; 13(4):1665-1671. doi: 10.5958/0974-360X.2020.00302.9   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-4-12


REFERENCES:
1.    Hunter J. A treatise on the blood, inflammation and gunshot wounds. Palmer JF (Ed). p. 195, 1794; Philadelphia: Raswell, Barrington, and Haswell, 1840.
2.    Hunter J. The works of John Hunter, F.R.S. with notes. Palmer JF (Ed). London: Longman, Rees, Orme, Brown, Green, and Longman, 1835.
3.    Aristotle on the parts of animals. W. Ogle (Trans.). London: Kegan Paul, Trench and Co., 1882.
4.    Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 285: pp. 1182–6, 1971.
5.    Risau W. Mechanisms of angiogenesis. Nature 386: pp. 671–4, 1997.
6.    Schmidt A, Brixius K, Bloch W. Endothelial precursor cell migration during vasculogenesis. Circ Res 101: pp. 125–36, 2007.
7.    Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314: pp. 107–17, 2003.
8.    Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. DevDyn 231: pp. 474–88, 2004.
9.    Patan S, Alvarez MJ, Schittny JC, Burri PH. Intussusceptivemicrovascular growth: A common alternative to capillary sprouting. Arch Histol Cytol 55: pp. 65–75, 1992.
10.    J. Folkman, Tumor angiogenesis factor, Cancer Res. 34 (1974) 2109–2113.
11.    E. Buchdunger, T. O’Reilly, J. Wood, Pharmacology of Imatinib (STI571), Eur. J. Cancer 38 (5) (2002) 28–36.
12.    Hassan et al. Correlation of antiangiogenic, antioxidant and cytotoxic activities of some Sudanese medicinal plants with phenolic and flavonoid contents BMC Complementary and Alternative Medicine 2014, 14:406
13.    Bray F, Ren JS, Masuyer E, Ferlay J: Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 2013, 132(5):1133–1145.
14.    Chorawala MR, Oza PM, Shah GB: Mechanisms of anticancer drugs resistance: an overview. Int J Pharma Sci Drug Res 2012, 1:01–09.
15.    Cragg GM, Newman DJ: Plants as a source of anti-cancer agents. J Ethnopharmacol 2005, 100(1–2):72–79.
16.    Jung Park E, Pezzuto J: Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002, 21(3–4):231–255.
17.    Shoeb M: Anticancer Agents from Medicinal Plants. Pharmacology: Bangladesh Journal of; 2006:1(2006)
18.    Hayes NA, Foreman JC. The activity of compounds extracted from feverfew on histamine release from rat mast cells. J Pharm Pharmacol. 1987;39:466–70.
19.    Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA, Dias Filho BP, Morgado-Díaz JA, de Souza W, et al. Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetumparthenium. Antimicrob Agents Chemother. 2005; 49:176–82.
20.    Zhang S, Ong CN, Shen SM. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 2004; 208:143–53.
21.    Zhang S, Ong CN, Shen HM. Involvement of proapoptotic Bcl-2 family members in parthenolide-induced mitochondrial dysfunction and apoptosis. Cancer Lett. 2004; 211:175–88.
22.    Ross JJ, Arnason JT, Birnboim HC. Low concentrations of the feverfew component parthenolide inhibit in vitro growth of tumor lines in a cytostatic fashion. Planta Med. 1999; 65:126–9.
23.    Miglietta A, Bozzo F, Gabriel L, Bocca C. Microtubule-interfering activity of parthenolide. Chem Biol Interact. 2004; 149:165–73.
24.    D. Ribatti, B. Nico, A. Vacca, L. Roncali, P.H. Burri, V. Djonov, Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo, Anat. Rec. 264 (2001) 317–324.
25.    M. Richardson, G. Singh, Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into angiogen- esis, Curr. Drug Targets Cardiovasc. Haematol. Disord. 3 (2003) 155–185.
26.    V. Hamburger, H.L. Hamilton, A series of normal stages in the development of the chick embryo. J. Morphol. 88 (1951) 49–92.
27.    K.S. Samkoe, D.T. Cramb, Application of an ex ovo chicken chorioal- lantoic membrane model for two-photon excitation photodynamic therapy of age-related macular degeneration, J. Biomed. Opt. 8 (2003) 410–417.
28.    C. Dimitropoulou, W. Malkusch, E. Fait, M.E. Maragoudakis, M.A. Konerding, The vascular architecture of the chick chorioallantoic membrane: sequential quantitative evaluation using corrosion casting, Angiogenesis 2 (1998) 255–263.
29.    P.E. Funk, C.B. Thompson, Current concepts in chicken B cell development, Curr. Top. Microbiol. Immunol. 212 (1996) 17–28.
30.    T.F. Davison, The immunologists' debt to the chicken, Br. Poult. Sci. 44 (2003) 6–21.
31.    E.M. Janse, S.H. Jeurissen, Ontogeny and function of two non-lymphoid cell populations in the chicken embryo, Immunobiology 182 (1991) 472–481.
32.    J.P. Chizea, V.K. Dailey, E. Williams, M.D. Johnson, R.G. Pestell, J.O. Ojeifo, Endothelial progenitor cells significantly contribute to vasculatures in human and mouse breast tumors, The Open Hematol. J. 1 (2008) 30–62.
33.    W. Leene, M.J.M. Duyzings, C. Von Steeg, Lymphoid stem cell identification in the developing thymus and bursa of Fabricius of the chick, Z. Zellforsch. 136 (1973) 521–533.
34.    D. Ribatti, A. Gualandris, M. Bastaki, A. Vacca, M. Iuraro, L. Roncali, M. Presta, New model for the study of angiogenesis antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatine sponge/chorioallantoic membrane assay, J. Vasc. Res. 34 (1997) 455–463.
35.    Aybike Özcetin, Achim Aigner, Udo Bakowsky, A chorioallantoic membrane model for the determination of anti-angiogenic effects of imatinib
36.    Angelica Vargas, Magali Zeisser-Labouèbe, Norbert Lange, Robert Gurny, Florence Delie The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems☆
37.    Blois MS (1958). Antioxidant determinations by the use of a stable free radical. Nature, 29: 1199-1200.
38.    Ebrahimzadeh MA, Nabavi SF, Nabavi SM (2009). Antihemolytic and antioxidant activity of Hibiscus esculenus leaves Pharmacol. online. 2: 1097-1105.
39.    Benzie IFF, Strain JJ (1996). Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal Biochem 239:70-76.
40.    Meng, D., Zhang, P., Zhang, L., Wang, H., Ho, C.-T., Li, S., Zhao, H. (2017). Detection of cellular redox reactions and antioxidant activity assays. Journal of Functional Foods, 37, 467–479.doi:10.1016/j.jff.2017.08.008
41.    Mossman, T. 1983. Rapid colorimetric assay for cellular growth and survival – application to proliferation and cytotoxicity assays. J. Immunol. Methods 65.
42.    Baba, A., Tachi, M., Maruyama, Y., and Kazama, I. (2015). Suppressive effects of diltiazem and verapamil on delayed rectifier K+-channel currents in murine thymocytes. Pharmacological Reports, 67(5), 959-964.doi:10.1016/j.pharep.2015.01.009
43.    SS Chitlange, Kiran Bagri, DM Sakarkar. Stability Indicating RP- HPLC Method for Simultaneous Estimation of Valsartan and Amlodipine in Capsule Formulation. Asian J. Research Chem. 1(1): July-Sept. 2008;Page 15-18.
44.    S Kalidas, B Kameswari, P Devi, B Madhumitha, R Meera, NJ Merlin. Phyto-Physico chemical evaluation, Antioxidant activities and Diuretic activity of Leaves of Lagerstroemia reginae. Asian J. Research Chem. 1(2): Oct.-Dec. 2008;Page 83-87.
45.    Balakrishnan N, Panda A B, Raj N R, Shrivastava A, Prathani R. The Evaluation of Nitric Oxide Scavenging Activity of Acalypha Indica Linn Root. Asian J. Research Chem. 2(2): April.-June, 2009 page 148-150.
46.    Priyanka R Patil, Sachin U Rakesh, PN Dhabale, KB Burade. Simultaneous UV Spectrophotometric Method for Estimation of Losartan Potssium and Amlodipine Besylate in Tablet Dosage Form. Asian J. Research Chem. 2(2): April.-June, 2009 page 183-187
47.    Nikhat F, D. Satynarayana, Subhramanyam EVS. Isolation, Charectrisation and Screening of Antioxidant Activity of the Roots of Syzygiumcuminii (L) Skeel. Asian J. Research Chem. 2(2): April.-June, 2009 page 218-221.
48.    Pallavi Salve, Deepali Gharge, Rupali Kirtawade, Pandurang Dhabale, Kishor Burade. Simple Validated Spectroscopic Method for Estimation of Amlodipine Besylate from Tablet Formulation. Asian J. Research Chem. 2(4):Oct.-Dec. 2009 page 553-555.
49.    B. Sehgal, G.B. Kunde. Oxidative Stability of Biodiesel Using Tea Leaves. Asian J. Research Chem. 3(3): July- Sept. 2010; Page 620-622
50.    Radhika C., Venkatesham Akena, Venkateshwar Rao J., Sarangapani M.. Synthesis and Cytotoxic Activity of New Indole Derivatives. Asian J. Research Chem. 3(4): Oct. - Dec. 2010; Page 965-968.
51.    Sachin Malik, Ashish Choudhary. Anti-Oxidant Activity of Novel 5-Substituted Arylidene-3-Substituted-Benzyl-Thiazolidine-2, 4-Diones. Asian J. Research Chem. 4(1): January 2011; Page 120-122.
52.    Uddandam Aruneswari, Sreerama Usha rani, M Aruna Devi, Galla Rajitha. Synthesis and Evaluation of Substituted Imidazolones for Antibacterial and Antioxidant Activities. Asian J. Research Chem. 4(2): February 2011; Page 257-259.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available