Author(s):
Mohamed Rizwan I, Damodharan N
Email(s):
damodhan@srmist.edu.in
DOI:
10.5958/0974-360X.2020.00247.4
Address:
Mohamed Rizwan I1, Damodharan N2*
1Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603203.
2Department of Pharmaceutics, SRM College Of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603203.
*Corresponding Author
Published In:
Volume - 13,
Issue - 3,
Year - 2020
ABSTRACT:
Drug delivery is a technique by which the drug substances are administered to attain the therapeutic responses in humans or animals. It is crucial to study about the drug release or dissolution for a new solid dosage form. The prediction of correct data of discharge from the drug in the dissolution using mathematical model, which can help to understand the innovation in drug design and formulation with desired therapeutic efficacy and safety. Generally, the mathematical models are used to determine the release of drug profiles are zero-order kinetic model, first order kinetic model, Korsmeyer-peppas model, Higuchi model, Hopfenberg model, Baker Lonsdale model, Hixson Crowell model and Weibull model. Zero-order model explains the constant releases from the formulation such as transdermal, implantable depot, oral control release, matrix tablet with low solubility and suspension. First-order have explained about the release from the formulation like matrix dissolution controlled release, matrix diffusion controlled release, sustained release. Higuchi model explained the drug has released from matrix type. Hixson Crowell cube root law described the drug release has occurred from the variation in particles diameter of system and in surface area. Korsmeyer-peppas model created the experimental equation to evaluate the both fickian and non-fickian release of drug. From the Higuchi model, the Baker and Lonsdale has improved which describes the drug discharge from the matrices of spherical. The Weibull model defined the drug release from the aggregated fraction of drug ‘m’ at time ‘t’ in solution. Hopfenberg model compares the drug release from surface eroding polymers.
Cite this article:
Mohamed Rizwan I, Damodharan N. Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research J. Pharm. and Tech 2020; 13(3):1339-1345. doi: 10.5958/0974-360X.2020.00247.4
Cite(Electronic):
Mohamed Rizwan I, Damodharan N. Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research J. Pharm. and Tech 2020; 13(3):1339-1345. doi: 10.5958/0974-360X.2020.00247.4 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-3-52
REFERENCES:
1. J. Siepmann, F. Siepmann, “Mathematical modeling of drug delivery”, Int. J.Pharmaceutics, 364: 328–343 (2008).
2. Patil S, Lade P, Janugade B, Babar S, Ghewade Y. Effect of Concentration of Gellan Gum and Calcium Chloride Solution on Entrapment Efficiency and Drug Release from Calcium Gellan Beads. Res J Pharm Technol. 2009;2(4):862–5.
3. Makanan P, Diberikan S. Perbedaan Pengetahuan, Sikap dan Perilaku Penjamah Mkanan. Eur J Pharm Sci. 2016;13(2001):123–33.
4. A.A. Noyes, W.R. Whitney, “The rate of solution of solid substances in their own solutions”, J. Amer. Chem. Soc. 19(12), 930-934 (1897).
5. Duraivel S, Venkateswarlu V, Kumar AP, Gopinath H. Enhancement of dissolution rate of cefpodoxime proxetil by using solid dispersion and cogrinding approaches. Res J Pharm Technol. 2012;5(12):1552–62.
6. Brahmankar DM, Jaiswal SB (2009) Biopharmaceutics and pharmacokinetics: A treatise. Vallabh Publications, India, p: 20.
7. Gubbi S, Jarag R. Liquisolid Technique for Enhancement of Dissolution Properties of Bromhexine Hydrochloride. Res J Pharm Technol. 2009;2(2):382–6
8. J. Siepmann, N.A. Peppas, “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)”, Adv. Drug Del. Rev. 48:139–157 (2001).
9. J. Siepmann, F. Siepmann, “Mathematical modeling of drug delivery”, Int. J. Pharmaceutics, 364: 328–343 (2008).
10. Brandl F, Kastner F, Gschwind RM, Blunk T, Teßmar J, Göpferich A. Release Kinetics. J Control Release [Internet]. 2009;142(2):221–8
11. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems.,” Acta Pol. Pharm., vol. 67, no. 3, pp. 217–23, 2010.
12. Shivhare UD, Pardhi DM. Effect of non-volatile solvent on dissolution profile of Carvedilol Liquisolid compact. Res J Pharm Technol. 2011;4(4):537–44.
13. C.G. Varles, D.G. Dixon, C. Steiner, “Zero-order release from biphasic polymer hydrogels”, J. Cont. Rel. 34: 185- 192 (1995).
14. FDA, “Guidance for Industry Extended Release Oral Dosage Forms Development, Evaluation, and Application of In Vitro/In Vivo Correlations”, Center for Drug Evaluation and Research (CDER),
15. Hajare A, Jadhav P. Improvement of Solubility and Dissolution Rate of Indomethacin by Solid Dispersion in Polyvinyl Pyrrolidone K30 and Poloxomer 188. Asian J Pharm Technol. 2012;2(3):116–22.
16. C. G. Varelas, D. G. Dixon, and C. A. Steiner, “Zero-order release from biphasic polymer hydrogels,” J. Control. Release, vol. 34, no. 3, pp. 185–192, 1995.
17. M. Gibaldi and S. Feldman, “Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms,” J. Pharm. Sci., vol. 56, no. 10, pp. 1238–1242, 1967.
18. P. Costa and J. M. Sousa Lobo, “Modeling and comparison of dissolution profiles,” Eur. J. Pharm. Sci., vol. 13, no. 2, pp. 123–133, 2001.
19. J. G. Wagner, “Interpretation of percent dissolved- Time plots derived from in vitro testing of conventional tablets and capsules,” J. Pharm. Sci., vol. 58, no. 10, pp. 1253–1257, 1969.
20. S. Ummadi, B. Shravani, N. G. R. Rao, M. S. Reddy, and B. Sanjeev, “Overview on controlled release dosage form,” Int. J. Pharma Sci., vol. 3, no. 4, pp. 258–269, 2013.
21. Jambukiya V V, Parmar RB, Dudhrejiya A V, Tank HM, Vipul D. Enhancement of Solubility and Dissolution Rate of Poorly Water Soluble Drug by Using Modified Guar Gum. Asian J Pharm Technol. 2013;3(1):25–30.
22. Paarakh MP, Jose PANI, Setty CM, Peter G V. Release Kinetics – Concepts and Applications. Int J Pharm Res Technol. 2019;8(1):12– 20.
23. D. Suvakanta, P.N. Murthy, N. Lilakanta, C. Prasanta, “Kinetic Modeling on drug release from controlled drug delivery systems”, Acta Poloniae Pharmaceutica. 67(3), 217-223 (2010). 29. C.G. Varles, D.G. Dixon,
24. Sagri A, Rub R, Kulkarni A, Gonjari I, Saindane D, Shaikh U. Dissolution Enhancement of Ezetimibe by Solid Dispersion. Asian J Res Chem. 2009;2(3):325–31.
25. C. K. Sahoo, S. Ram, M. Rao, and M. Sudhakar, “The kinetic modeling of drug dissolution for drug delivery systems : An overview,” Der Pharm. Lett., vol. 7, no. 9, pp. 186–194, 2015.
26. Mathematical ROF, Delivery RD. International Journal of Medical Research and Pharmaceutical Sciences release drug delivery modelling in International Journal of Medical Research and Pharmaceutical Sciences. Int J Med Res Pharm Sci. 2017;4(5):84–95.
27. Yadav VB, Yadav A V, Polshettiwar SA, Wani MS. Improved Solubility and Dissolution Behavior of Norfloxacin by Crystal Modification. Res J Pharm Technol. 2008;1(1):29–32.
28. P. Costa and J. M. Sousa Lobo, “Modeling and comparison of dissolution profiles,” Eur. J. Pharm. Sci., vol. 13, no. 2, pp. 123–133, 2001.
29. K. H. Ramteke, P. A. Dighe, A. R. Kharat, and S. V Patil, “Review Article Mathematical Models of Drug Dissolution : A Review,” Sch. Acad. J. Pharm., vol. 3, no. 5, pp. 388–396, 2014.
30. Costa P, Ferreira DC, Sousa Lobo JM; Nitroglicerina emsistemas de libertacao transdermica - Determinacao da velocidade delibertacao. Rev. Port. Farm., 1996; 46: 4–8.
31. Desai SJ, Singh P, Simonelli AP. Higuchi WI; Investigation of factors influencing release of solid drug dispersed in inert matrices. IV, Some studies involving the polyvinyl chloride matrix. J Pharm Sci., 1966; 55: 1235–9.
32. Grassi M, Grassi G, Mathematical modelling and controlled drug delivery: Matrix systems. Curr. Drug. Deliv., 2005; 2: 97-116.
33. Shoaib HM, Tazeen J, Merchant AH, Yousuf IR; Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak. J. Pharm. Sci., 2006; 19: 119-24.
34. A. W. Hixson and J. H. Crowell, “Dependence of reaction velocity upon surface and agitation,” Ind. Eng. Chem., vol. 23, no. 8, pp. 923–931, 1931.
35. Baishya H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J Dev Drugs. 2017;06(02):1–8.
36. Karasulu HY, Ertana G, Kose T; Modeling of theophylline release from different geometrical erodible tablets. Eur. J. Pharm. and Biopharm., 2000; 49: 177-82.
37. Hopfenberg HB; Controlled Release Polymeric Formulations, Paul DR, Haris FW Eds., (ACS Symposium Series No. 33), American Chemical Society, Washington, 1976.
38. Chen S, Zhu J, Cheng J; Preparation and in vitro evaluation of a novel combined multiparticulate delayed-onset sustained-release formulation of diltiazem hydrochloride. Pharmazie., 2007; 62: 907-13.
39. R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, “Mechanisms of solute release from porous hydrophilic polymers”, Int J Pharm, 15: 25-35 (1983).
40. Shivhare UD, Pardhi DM. Effect of non-volatile solvent on dissolution profile of Carvedilol Liquisolid compact. Res J Pharm Technol. 2011;4(4):537–44.
41. R.W. Korsmeyer, N.A. Peppas, “Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly(HEMA-co-NVP) copolymers”, J. Cont. rel. 1(2): 89-98 (1984).
42. N. A. Peppas and B. Narasimhan, “Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems,” J. Control. Release, vol. 190, pp. 75–81, 2014.
43. D. Brooke, “Dissolution profile of log-normal powders II: Dissolution before critical time”, J. Phnrm. Sci. 63: 344-346 (1974).
44. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems.,” Acta Pol. Pharm., vol. 67, no. 3, pp. 217–23, 2010.
45. W. Weibull, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., pp. 293–297, 1951.
46. F. Langenbucher, “Linearization of dissolution rate curves by theWeibull distribution,” J Pharm Pharmacol, vol. 24, no. 12, pp. 979–981, 1972.
47. Romero P, Costa JB, Castel-Maroteaux X, Chulia D; Statistical optimization of a controlled release formulation obtained by a double compression process: application of a Hadamard matrix and afactorial design. In: Wells JI, Rubinstein MH (Eds.), Pharmaceutical Technology, Controlled Drug Release, Ellis Harwood New York, 1991; 2: 44–58.
48. Vudathala GK, Rogers JA; Dissolution of fludrocortisone from phospholipid coprecipitates. J. Pharm. Sci., 1992; 82: 282–6.
49. P. Costa and J. M. Sousa Lobo, “Modeling and comparison of dissolution profiles,” Eur. J. Pharm. Sci., vol. 13, no. 2, pp. 123–133, 2001.
50. Pedersen PV, Myrick JW; Versatile kinetic approach to analysis of dissolution data. J. Pharm. Sci., 1978; 67: 1450–5.
51. Christensen FN, Hansen FY, Bechgaard H; Physical interpretation of parameters in the Rosin–Rammler–Sperling–Weibull distribution for drug release from controlled release dosage forms. J. Pharm. Pharmacol., 1980; 32: 580–2.
52. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems.,” Acta Pol. Pharm., vol. 67, no. 3, pp. 217–23, 2010.
53. K. H. Ramteke, P. A. Dighe, A. R. Kharat, and S. V Patil, “Review Article Mathematical Models of Drug Dissolution : A Review,” Sch. Acad. J. Pharm., vol. 3, no. 5, pp. 388–396, 2014.
54. Seki T, Kawaguchi T, Endoh H, Ishikawa K, Juni K, Nakano M; Controlled release of 3,5- diester prodrugs of 5-fluoro-2-deoxyuridine from poly-L-lactic acid microspheres. J. Pharm. Sci., 1980; 79: 985–7.
55. Polleto FS, Jager E, Re MI, Guterres SS, Pohlmann AR; Rate-modulating ... acid model drugs. Int. J. Pharm., 2007; 345: 70.
56. Hopfenberg HB; Controlled Release Polymeric Formulations, Paul DR, Haris FW Eds., (ACS Symposium Series No. 33), American Chemical Society, Washington, 1976.
57. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, “Mechanisms of solute release from porous hydrophilic polymers,” Int. J. Pharm., vol. 15, no. 1, pp. 25–35, 1983.
58. H. K. Shaikh, R. V Kshirsagar, and S. G. Patil, “Mathematical Models for Drug Release Characterization : a Review,” World J. Pharm. Pharm. Sci., vol. 4, no. 4, pp. 324–338, 2015.
59. K. H. Ramteke, P. A. Dighe, A. R. Kharat, and S. V Patil, “Review Article Mathematical Models of Drug Dissolution : A Review,” Sch. Acad. J. Pharm., vol. 3, no. 5, pp. 388–396, 2014.
60. Thawatchai P, Tamotsu K, Garnpimol CR; Chitosan citrate as film former: compatibility with water-soluble anionic dyes and drug dissolution from coated tablets. Int. J. Pharm., 2000; 198: 97-111.
61. Kumar GP, Kumar SK. Drug Dissolution Enhancement Formation : Current Prospects. Res J Pharm Dos Forms Technol. 2011;3(6):251–9.
62. Nagpal M, Rakha P, Goyal S, Dhingra G, Gupta S. Comparison of Biorelevant and Compendial Dissolution Media and Prediction of In-vivo Plasma Profile of BCS Class II Drug. Res J Pharm Dos Forms Technol. 2010;2(1):37–40.
63. Senthilkumar KL, Sirisha Y. Enhancement of dissolution rate studies on solid Dispersion of Aceclofenac. Int J Pharma Bio Sci. 2011;2(2):70–6.