Author(s): Nawan, Isnaeni, Eddy B. Wasito

Email(s): dr_na1tanan@yahoo.com , nawan@med.upr.ac.id

DOI: 10.5958/0974-360X.2020.00206.1   

Address: Nawan1*, Isnaeni2, Eddy B. Wasito3
1Department of Microbiology, Faculty of Medicine, Palangka Raya University, Jl. H. Timang Kompleks Tunjung Nyaho 73111, Palangka Raya, Indonesia.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Jl. Dharmawangsa Dalam Surabaya 60286, Indonesia.
3Department of Microbiology Faculty of Medicine, Airlangga University, Jl. Prof. Mustopo, Surabaya 60286, Indonesia.
*Corresponding Author

Published In:   Volume - 13,      Issue - 3,     Year - 2020


ABSTRACT:
The incidence of infection by extended spectrum of ß lactamase (ESBL)-producing bacteria is increasing throughout the world. Surveillance results in Indonesia (2012) showed that extended spectrum of ß lactamase (ESBL) producing Escherichia coli was increased (52%). Streptomyces has become an important source of important bioactive compounds with high commercial value and continues to be routinely screened to look for new bioactive substances. The aims of this research is to screen in vitro antibacterial activity of the free cell fermentation Streptomyces sp. of Kalimantan acidic peatland (isolate 2.1). Streptomyces sp. have been isolated from Kalimantan Tengah peat soil (Palangka Raya). The isolatation and fermentation process to obtain antibaterial substances were performed in the International Streptomyces Projects (ISP)-4 media on rotary shaker at 150 rpm, 28?C for 5 days. In vitro antibacterial testing of one to 5 days free cell fermentation broth (FCFB) of the Strepromyces sp. isolate 2.1 have been carried out by diffusion agar method. Antibacterial testing using the extended spectrum of ß lactamase (ESBL) Escherichia coli isolated from Dr. Soetomo Hospital patients in Surabaya as test microorganisms. The results of this research is the FCFB of Streptomyces sp. isolate 2.1 showed its activities againts ESBL producing Escherichia coli 6024 and 6110 with inhibition zone average 12,42 mm and 13,17 mm. Conclusion of this research is Streptomyces sp. isolated Kalimantan acidic peatland (isolate 2.1) potent to againts ESBL producing Escherichia coli.


Cite this article:
Nawan, Isnaeni, Eddy B. Wasito. Antimicrobial Activity of Streptomyces sp. Isolated from Acidic Peatlands against Extended Spectrum Beta Lactamase (ESBL) producing Escherichia coli. Research J. Pharm. and Tech 2020; 13(3): 1121-1126. doi: 10.5958/0974-360X.2020.00206.1

Cite(Electronic):
Nawan, Isnaeni, Eddy B. Wasito. Antimicrobial Activity of Streptomyces sp. Isolated from Acidic Peatlands against Extended Spectrum Beta Lactamase (ESBL) producing Escherichia coli. Research J. Pharm. and Tech 2020; 13(3): 1121-1126. doi: 10.5958/0974-360X.2020.00206.1   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-3-11


REFERENCES:

1.     Sreeja MK, Gowrishankar NL, Adisha S, Divya KC. Antibiotic resistance-reasons and the most common resistant pathogens - A review. Res J Pharm Technol [Internet]. 2017 [cited 2019 Jul 7];10(6):1886. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=6&article=054

2.     Nandakumar S, Kumar MGS, Bini B, Krishnan GG. Antimicrobial activity of selected medicinal plants against oral microflora. Res J Pharm Technol [Internet]. 2016 [cited 2019 Jul 7];9(12):2271. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=9&issue=12&article=035

3.     Syntem LMO, Dutta H, Neelusree P, Kalyani M. Prevalence of extended spectrum ß-Lactamase and Carbapenemase producing isolates of Klebsiella SPP in a tertiary care hospital. Res J Pharm Technol [Internet]. 2018 [cited 2019 Jul 7]; 11(9):3777. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=9&article=007

4.     Shahid SM, Umar N. Spectrum of Antimicrobial Susceptibility of E. coli and Staphylococcus aureus Isolates from Clinical Samples. Res J Pharm Technol [Internet]. 2015 [cited 2019 Jul 7];8(10):1399. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=10&article=012

5.     Rana S, Sirwar SB, Vijayaraghavan. Prevalence and Antibiogram of Extended Spectrum β-Lactamase Producing Klebsiella pneumoniae and Proteus mirabilis in UTI. Res J Pharm Technol [Internet]. 2015 [cited 2019 Jul 7];8(11):1465. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=11&article=001

6.     Baaity Z, Almahmoud I, Khamis A. Prevalence of Extended Spectrum β Lactamases (ESBL) in E. coli at Al-Assad Teaching Hospital. Res J Pharm Technol [Internet]. 2017 [cited 2019 Jul 7];10(7):2433. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=7&article=082

7.     Singh LS, Sharma H, Talukdar NC. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol [Internet]. 2014;14(1):278. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4243295&tool=pmcentrez&rendertype=abstract

8.     Subashini E, Kannabiran K. Isolation and Identification of Anti-Esbl (Extended Spectrum Β-Lactamase) Compound From Marine Streptomyces Sp. Vitsjk8. J Adv Sci Res. 2014;5(3):13–8.

9.     Kontro M, Lignell U, Hirvonen MR, Nevalainen A. pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett Appl Microbiol. 2005;41(1):32–8.

10. Chelvan Y, Chelvan T, Vanitha MC. Ecological Niche Analysis of Streptomyces sp. Amet_ytc 21 nov. Strain Isolated from Marine Intertidal Zones of bay of Bengal and Buckingham Canal. Res J Pharm Technol [Internet]. 2018 [cited 2019 Jul 7];11(8):3641. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=8&article=076

11. Zakalyukina Y V., Zenova GM, Zvyagintsev DG. Peculiarities of growth and morphological differentiation of acidophilic and neutrophilic soil streptomycetes. Microbiology. 2004;73(1):74–8.

12. Niyasom C, Boonmak S, Meesri N. Antimicrobial Activity of Acidophilic Actinomycetes Isolated from Acidic Soil. 2015;15(2):62–9.

13. Vinodhini G, Kumar MA, Balamanikandan S, Seenuvasan M. Assessment of Antimicrobial Property of a Secondary Metabolite Produced by an Enriched Bacterial Culture Isolated from Soil. Res J Pharm Technol [Internet]. 2015 [cited 2019 Jul 7];8(1):51. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=1&article=010

14. Hamedi J, Imanparast S, Mohammadipanah F. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iran J Microbiol [Internet]. 2015 Feb [cited 2016 Oct 31];7(1):23–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26644870

15. Agus F, Subiksa IGM. Lahan Gambut : Potensi untuk Pertanian dan Aspek Lingkungan [Internet]. Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian. 2008. 41 p. Available from: http://www.worldagroforestry.org/sea/publications/files/book/BK0135-09.PDF

16. Chow AT, Tanji KK, Gao S, Dahlgren RA. Temperature, water content and wet–dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biol Biochem. 2006;38(3):477–88.

17. Mäkiranta P, Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem. 2009;41(4):695–703.

18. Kechavarzi C, Dawson Q, Bartlett M, Leeds-Harrison PB. The role of soil moisture, temperature and nutrient amendment on CO2 efflux from agricultural peat soil microcosms. Geoderma [Internet]. 2010 Jan [cited 2016 Oct 30];154(3–4):203–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016706109000706

19. Smith VR. Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island. Soil Biol Biochem. 2005;37(1):81–91.

20. Ausec L, Kraigher B, Mandic-Mulec I. Differences in the activity and bacterial community structure of drained grassland and forest peat soils. Soil Biol Biochem. 2009;41(9):1874–81.

21. Wahyunto, Suryadiputra N. Peatland Distribution in Sumatra and Kalimantan-explanation of its data sets including source of information, accuracy, data constraints and gaps. 2008;1–64.

22. Sofyan Ritung, Wahyunto, Kusumo Nugroho, Sukarman, Hikmatullah, Suparto CT. PETA Lahan Gambut Indonesia Skala 1:250.000. 2011;11.

23. Alexander SK, Strete D. Microbiology : a photographic atlas for the laboratory [Internet]. San Francisco : Benjamin Cummings; 2001 [cited 2019 Apr 18]. 193 p. Available from: https://www.worldcat.org/title/microbiology-a-photographic-atlas-for-the-laboratory/oclc/753429329

24. Bergey DH (David H, Holt JG. Bergey’s manual of determinative bacteriology. [Internet]. Williams & Wilkins; 1993 [cited 2019 Apr 18]. 787 p. Available from: https://cmc.marmot.org/Record/.b16004681

25. Isnaeni I. Bioautografi Antibiotika Hasil Fermentasi Mutan Streptomyces griseus ATCC 10137. Maj Farm Airlangga [Internet]. 2005;(Vol 5, No 1 (2005): Majalah Farmasi Airlangga). Available from: http://journal.lib.unair.ac.id/index.php/MFA/article/view/497

26. Zhou X, Zhang Z, Tian L, Li X, Tian C. Microbial communities in peatlands along a chronosequence on the Sanjiang Plain, China. Sci Rep [Internet]. 2017 Dec 29 [cited 2019 Jul 3];7(1):9567. Available from: http://www.nature.com/articles/s41598-017-10436-5

27. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum Beta-lactamases : Definition , Classification and Epidemiology. Horizonpress. 2015;11–22.

28. Zin NM, Sarmin NIM, Ghadin N, Basri DF, Sidik NM, Hess WM, et al. Bioactive endophytic streptomycetes from the Malay Peninsula. FEMS Microbiol Lett [Internet]. 2007 Sep [cited 2016 Oct 30];274(1):83–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17608698

29. Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) [Internet]. 2005 Jan [cited 2016 Oct 30];58(1):1–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15813176

30. Pokhrel CP, Ohga S. Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes. Food Chem. 2007 Jan;105(2):641–6.

31. Anima N, Dhamodharan S, Nayak BK. Antibiotic Resistance Pattern Exhibited by Esbl (Extended Spectrum β-Lactamases) in Multidrug Resistant Strains, Escherichia coli. Res J Pharm Technol [Internet]. 2017 [cited 2019 Jul 7];10(11):3705. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=11&article=010

32. Monalisa R, Gopinath. Detection of the presence of bla TEM-1 gene for ESBL production among clinical strains of E. coli. Res J Pharm Technol [Internet]. 2016 [cited 2019 Jul 7];9(10):1638. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=9&issue=10&article=027

33. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci [Internet]. 2015 Jan [cited 2019 Apr 4];22(1):90–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25561890

34. Rawat D, Nair D. Extended-spectrum beta-lactamases in Gram Negative Bacteria. J Glob Infect Dis [Internet]. 2010;2(3):263–74. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20927289

35. Thenmozhi S, Moorthy K, Sureshkumar BT, Suresh M. Antibiotic Resistance Mechanism of ESBL Producing Enterobacteriaceae in Clinical Field: A Review. 2014;2.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available