REFERENCES:
1. Sreeja MK,
Gowrishankar NL, Adisha S, Divya KC. Antibiotic resistance-reasons and the most
common resistant pathogens - A review. Res J Pharm Technol [Internet]. 2017
[cited 2019 Jul 7];10(6):1886. Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=6&article=054
2. Nandakumar S,
Kumar MGS, Bini B, Krishnan GG. Antimicrobial activity of selected medicinal
plants against oral microflora. Res J Pharm Technol [Internet]. 2016 [cited
2019 Jul 7];9(12):2271. Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=9&issue=12&article=035
3. Syntem LMO,
Dutta H, Neelusree P, Kalyani M. Prevalence of extended spectrum ß-Lactamase
and Carbapenemase producing isolates of Klebsiella SPP in a tertiary care
hospital. Res J Pharm Technol [Internet]. 2018 [cited 2019 Jul 7]; 11(9):3777. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=9&article=007
4. Shahid SM, Umar
N. Spectrum of Antimicrobial Susceptibility of E. coli and Staphylococcus
aureus Isolates from Clinical Samples. Res J Pharm Technol [Internet]. 2015
[cited 2019 Jul 7];8(10):1399. Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=10&article=012
5. Rana S, Sirwar
SB, Vijayaraghavan. Prevalence and Antibiogram of Extended Spectrum β-Lactamase
Producing Klebsiella pneumoniae and Proteus mirabilis in UTI. Res J Pharm
Technol [Internet]. 2015 [cited 2019 Jul 7];8(11):1465. Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=11&article=001
6. Baaity Z,
Almahmoud I, Khamis A. Prevalence of Extended Spectrum β Lactamases (ESBL) in
E. coli at Al-Assad Teaching Hospital. Res J Pharm Technol [Internet]. 2017
[cited 2019 Jul 7];10(7):2433. Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=7&article=082
7. Singh LS, Sharma
H, Talukdar NC. Production of potent antimicrobial agent by actinomycete,
Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of
Manipur, India. BMC Microbiol [Internet]. 2014;14(1):278. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4243295&tool=pmcentrez&rendertype=abstract
8. Subashini E,
Kannabiran K. Isolation and Identification of Anti-Esbl (Extended Spectrum
Β-Lactamase) Compound From Marine Streptomyces Sp. Vitsjk8. J Adv Sci Res.
2014;5(3):13–8.
9. Kontro M,
Lignell U, Hirvonen MR, Nevalainen A. pH effects on 10 Streptomyces spp. growth
and sporulation depend on nutrients. Lett Appl Microbiol. 2005;41(1):32–8.
10. Chelvan Y,
Chelvan T, Vanitha MC. Ecological Niche Analysis of Streptomyces sp. Amet_ytc
21 nov. Strain Isolated from Marine Intertidal Zones of bay of Bengal and Buckingham
Canal. Res J Pharm Technol [Internet]. 2018 [cited 2019 Jul 7];11(8):3641.
Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=8&article=076
11. Zakalyukina Y V.,
Zenova GM, Zvyagintsev DG. Peculiarities of growth and morphological
differentiation of acidophilic and neutrophilic soil streptomycetes.
Microbiology. 2004;73(1):74–8.
12. Niyasom C,
Boonmak S, Meesri N. Antimicrobial Activity of Acidophilic Actinomycetes
Isolated from Acidic Soil. 2015;15(2):62–9.
13. Vinodhini G,
Kumar MA, Balamanikandan S, Seenuvasan M. Assessment of Antimicrobial Property
of a Secondary Metabolite Produced by an Enriched Bacterial Culture Isolated
from Soil. Res J Pharm Technol [Internet]. 2015 [cited 2019 Jul 7];8(1):51.
Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=8&issue=1&article=010
14. Hamedi J,
Imanparast S, Mohammadipanah F. Molecular, chemical and biological screening of
soil actinomycete isolates in seeking bioactive peptide metabolites. Iran J
Microbiol [Internet]. 2015 Feb [cited 2016 Oct 31];7(1):23–30. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/26644870
15. Agus F, Subiksa
IGM. Lahan Gambut : Potensi untuk Pertanian dan Aspek Lingkungan [Internet].
Balai Penelitian Tanah, Badan Penelitian dan Pengembangan Pertanian. 2008. 41
p. Available from:
http://www.worldagroforestry.org/sea/publications/files/book/BK0135-09.PDF
16. Chow AT, Tanji
KK, Gao S, Dahlgren RA. Temperature, water content and wet–dry cycle effects on
DOC production and carbon mineralization in agricultural peat soils. Soil Biol
Biochem. 2006;38(3):477–88.
17. Mäkiranta P,
Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K. Indirect regulation of
heterotrophic peat soil respiration by water level via microbial community
structure and temperature sensitivity. Soil Biol Biochem. 2009;41(4):695–703.
18. Kechavarzi C,
Dawson Q, Bartlett M, Leeds-Harrison PB. The role of soil moisture, temperature
and nutrient amendment on CO2 efflux from agricultural peat soil microcosms.
Geoderma [Internet]. 2010 Jan [cited 2016 Oct 30];154(3–4):203–10. Available
from: http://linkinghub.elsevier.com/retrieve/pii/S0016706109000706
19. Smith VR.
Moisture, carbon and inorganic nutrient controls of soil respiration at a
sub-Antarctic island. Soil Biol Biochem. 2005;37(1):81–91.
20. Ausec L,
Kraigher B, Mandic-Mulec I. Differences in the activity and bacterial community
structure of drained grassland and forest peat soils. Soil Biol Biochem.
2009;41(9):1874–81.
21. Wahyunto, Suryadiputra
N. Peatland Distribution in Sumatra and Kalimantan-explanation of its data sets
including source of information, accuracy, data constraints and gaps.
2008;1–64.
22. Sofyan Ritung,
Wahyunto, Kusumo Nugroho, Sukarman, Hikmatullah, Suparto CT. PETA Lahan Gambut Indonesia
Skala 1:250.000. 2011;11.
23. Alexander SK,
Strete D. Microbiology : a photographic atlas for the laboratory [Internet].
San Francisco : Benjamin Cummings; 2001 [cited 2019 Apr 18]. 193 p. Available
from: https://www.worldcat.org/title/microbiology-a-photographic-atlas-for-the-laboratory/oclc/753429329
24. Bergey DH (David
H, Holt JG. Bergey’s manual of determinative bacteriology. [Internet]. Williams
& Wilkins; 1993 [cited 2019 Apr 18]. 787 p. Available from:
https://cmc.marmot.org/Record/.b16004681
25. Isnaeni I.
Bioautografi Antibiotika Hasil Fermentasi Mutan Streptomyces griseus ATCC
10137. Maj Farm Airlangga [Internet]. 2005;(Vol 5, No 1 (2005): Majalah Farmasi
Airlangga). Available from: http://journal.lib.unair.ac.id/index.php/MFA/article/view/497
26. Zhou X, Zhang Z,
Tian L, Li X, Tian C. Microbial communities in peatlands along a chronosequence
on the Sanjiang Plain, China. Sci Rep [Internet]. 2017 Dec 29 [cited 2019 Jul
3];7(1):9567. Available from: http://www.nature.com/articles/s41598-017-10436-5
27. Ghafourian S,
Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum Beta-lactamases :
Definition , Classification and Epidemiology. Horizonpress. 2015;11–22.
28. Zin NM, Sarmin
NIM, Ghadin N, Basri DF, Sidik NM, Hess WM, et al. Bioactive endophytic
streptomycetes from the Malay Peninsula. FEMS Microbiol Lett [Internet]. 2007
Sep [cited 2016 Oct 30];274(1):83–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17608698
29. Bérdy J.
Bioactive microbial metabolites. J Antibiot (Tokyo) [Internet]. 2005 Jan [cited
2016 Oct 30];58(1):1–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15813176
30. Pokhrel CP, Ohga
S. Submerged culture conditions for mycelial yield and polysaccharides
production by Lyophyllum decastes. Food Chem. 2007 Jan;105(2):641–6.
31. Anima N,
Dhamodharan S, Nayak BK. Antibiotic Resistance Pattern Exhibited by Esbl
(Extended Spectrum β-Lactamases) in Multidrug Resistant Strains, Escherichia
coli. Res J Pharm Technol [Internet]. 2017 [cited 2019 Jul 7];10(11):3705.
Available from:
http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=11&article=010
32. Monalisa R,
Gopinath. Detection of the presence of bla TEM-1 gene for ESBL production among
clinical strains of E. coli. Res J Pharm Technol [Internet]. 2016 [cited 2019
Jul 7];9(10):1638. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=9&issue=10&article=027
33. Shaikh S, Fatima
J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum
beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci
[Internet]. 2015 Jan [cited 2019 Apr 4];22(1):90–101. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/25561890
34. Rawat D, Nair D.
Extended-spectrum beta-lactamases in Gram Negative Bacteria. J Glob Infect Dis
[Internet]. 2010;2(3):263–74. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20927289
35. Thenmozhi S,
Moorthy K, Sureshkumar BT, Suresh M. Antibiotic Resistance Mechanism of ESBL
Producing Enterobacteriaceae in Clinical Field: A Review. 2014;2.