Author(s): Ruri Vivian Nilamsari, Wahyu Isnia Adharini, Yoga Dwi Jatmiko, Aris Soewondo, Hideo Tsuboi, Muhaimin Rifa’i


DOI: 10.5958/0974-360X.2020.01069.0   

Address: Ruri Vivian Nilamsari1, Wahyu Isnia Adharini1, Yoga Dwi Jatmiko1, Aris Soewondo1, Hideo Tsuboi2, Muhaimin Rifa’i1*
1Department of Biology, Faculty Mathematics and Natural Sciences, Brawijaya University, Veteran Street Malang 65145 East Java, Indonesia.
2Department of Immunology, Graduate School of Medicine, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Japan.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020

Measles vaccine administered to 9 months until 2 years old toddlers to prevent measles disease. Arround 10% of the total population who received vaccination were still not immune to the measles virus infection. Polycyclic Aromatic Hydrocarbons (PAHs) is an affect factor and also known as an immunotoxic compound, even the effect of PAH exposure to the virus resistance post-vaccination remains elusive. This study was aimed to determine the effect of PAH exposure on the development of effector cells of the immune system after measles vaccination. Balb/c mice were exposed to PAH Benzo[a]pyrene (BaP) dose of 20 mg/kg body weight after injected by the measles vaccine dose of 20 mg/kg body weight. The immune cells was isolated from spleen and analyzed using flow cytometry. The BaP reduced innate and adaptive immune system reactivity towards vaccines. BaP injection after vaccination gave immunotoxic effect on NK cells by reduce the relative number of NK cells. Moreover, BaP gave cytotoxicity on CD4 T cells represented by decreasing CD4 T cell relative number and followed by an increasing of the relative number of CD8 T cells implicated in a low ratio of CD4: CD8 T cells population. Impaired NK and CD4 T cell proliferation during vaccination could reduce the immune response in forming a defense system against secondary infections.Therefore, the failure of measles vaccination may be caused by BaP administration that disrupt effector cell development.

Cite this article:
Ruri Vivian Nilamsari, Wahyu Isnia Adharini, Yoga Dwi Jatmiko, Aris Soewondo, Hideo Tsuboi, Muhaimin Rifa’i. Polycyclic Aromatic Hydrocarbons (PAH) Reduces the Effectiveness of Measles Vaccination Through Immunotoxicity to Innate and Adaptive Immune Cells. Research J. Pharm. and Tech. 2020; 13(12):6128-6131. doi: 10.5958/0974-360X.2020.01069.0

1.    Nambulli S, Sharp CR, Acciardo AS, Drexler JF, Duprex WP. Mapping the evolutionary trajectories of morbilliviruses: What, where and whither. Curr Opin Virol. 2016;16:95-105.
2.    Mulders MN, Rota PA, Icenogle JP, et al. Global Measles and Rubella Laboratory Network Support for Elimination Goals, 2010-2015. MMWR Morb Mortal Wkly Rep. 2016;65(17):438-442.
3.    Moss WJ. Measles. The Lancet. 2017;390(10111):2490-2502.
4.    Shanks GD, Waller M, Briem H, Gottfredsson M. Age-specific measles mortality during the late 19th-early 20th centuries. Epidemiol Infect. 2015;143(16):3434-3441.
5.    Lahariya C. Vaccine epidemiology: A review. J Fam Med Prim Care. 2016;5(1):7-15.
6.    Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed. 2015;5(3):182-189.
7.    Anderson C, Hehr A, Robbins R, R Hasan, M Athar, H Mukhtar and C A Elmets. Metabolic requirements for induction of contact hypersensitivity to immunotoxic polyaromatic hydrocarbons. J Immunol. 1995;155(7):3530-3537.
8.    Hwang J-A, Lee J-A, Cheong S-W, Youn H-J, Park J-H. Benzo(a)pyrene inhibits growth and functional differentiation of mouse bone marrow-derived dendritic cells. Downregulation of RelB and eIF3 p170 by benzo(a)pyrene. Toxicol Lett. 2007;169(1):82-90.
9.    Matiasovic J, Leva L, Maskova J, Kummer V, Faldyna M. Effects of Postnatal Exposure to Benzo[a]Pyrene on the Immunity of Immature Rats. Veterinarni Medicina.2008; 53 (2):93-100.
10.    Stackaruk ML, Lee AJ, Ashkar AA. Type I interferon regulation of natural killer cell function in primary and secondary infections. Expert Rev Vaccines. 2013;12(8):875-884.
11.    Evolution of T Cell Responses during Measles Virus Infection and RNA Clearance | Scientific Reports. articles/s41598-017-10965-z. Accessed September 29, 2019.
12.    De Jong WH, Kroese ED, Vos JG, Van Loveren H. Detection of immunotoxicity of benzo[a]pyrene in a subacute toxicity study after oral exposure in rats. Toxicol Sci Off J Soc Toxicol. 1999;50(2):214-220.
13.    Ratajczak W, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Immunological memory cells. Cent-Eur J Immunol. 2018;43(2):194-203.
14.    Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol. 2018;1869 (9):1-23.
15.    Paust S, Blish CA, Reeves RK. Redefining Memory: Building the Case for Adaptive NK Cells. J Virol. 2017;20 (91):1-12.
16.    Pahl JHW, Cerwenka A, Ni J. Memory-Like NK Cells: Remembering a Previous Activation by Cytokines and NK Cell Receptors. Front Immunol. 2018; 2796 (9): 1-9.
17.    Yokoyama WM. Mistaken notions about natural killer cells. Nat Immunol. 2008;9(5):481-485.
18.    Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the interface between innate and adaptive immunity. Cell Death Differ. 2008;15(2):226-233.
19.    Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167-2176.
20.    Bretscher PA. On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand J Immunol. 2014;79(6):361-376.
21.    Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16(2):102-111.
22.    MacLeod MKL, Clambey ET, Kappler JW, Marrack P. CD4 memory T cells: What are they and what can they do? Semin Immunol. 2009;21(2):53-61.
23.    Yewdell JW, Bennink JR, Hosaka Y. Cells process exogenous proteins for recognition by cytotoxic T lymphocytes. Science. 1988;239(4840):637-640.
24.    Cole DK, Laugel B, Clement M, Price DA, Wooldridge L, Sewell AK. The molecular determinants of CD8 co-receptor function. Immunology. 2012;137(2):139-148.
25.    Hada NK, and Ashawat MS. Post-marketing Surveillance Studies on the Paediatric population Associated with Vaccination. Research Journal of Pharmacology and Pharmacodynamics. 2014; 6(1):50-58.
26.    Praveena,CH, K. Pramod, K. C. Ajithkumar. Dendritic cell vaccine for cancer therapy. Research Journal of Pharmacology and Pharmacodynamics.2016; 8(3):141-147.
27.    Aher V D, Subham,B, Kamal K M. Vaccine: An Ultimate Way of Immunization. Research J. Pharm. and Tech. 2011; 4(3):369-374.
28.    Fernandez, R., A. Rammohan, & N. Awofeso. Correlates of first dose of measles vaccination delivery and uptake in Indonesia. Asian Pasific Journal of Tropical Medecine.2011;4:140-145.
29.    Goodson, J.L. & amp; J.F. Seward. Measles 50 years after use of measles vaccine. Infectious Disease Clinics of NA.2015;29: 725-743.
30.    Bhattacharya, S. & amp; J.K. Sinha. 2006. A text book of immunology. Academic Publisger. Kolkata.

Recomonded Articles:

Author(s): Nimbalkar V.V., Pansare P.M., Nishane B.B.

DOI: 10.5958/0974-360X.2015.00310.8         Access: Open Access Read More

Author(s): Muhammad Hamdan, Noorhamdani AS, Masruroh Rahayu, Mohammmad Hasan Machfoed

DOI: 10.5958/0974-360X.2019.01020.5         Access: Open Access Read More

Author(s): Trophimus Gnanabagyan Jayakaran, Vignesh R, Shankar P

DOI: 10.5958/0974-360X.2019.00700.5         Access: Open Access Read More

Author(s): Raj Kumar R, Praveen D, Palani Shanmugasundaram

DOI: 10.5958/0974-360X.2016.00164.5         Access: Open Access Read More

Author(s): Vaseeha Banu T.S., Sandhya K.V., K.N. Jayaveera

DOI: Not Available         Access: Open Access Read More

Author(s): M. Sumithra, Avantika Prabhabanik

DOI: 10.5958/0974-360X.2017.00036.1         Access: Open Access Read More

Author(s): Barokar A.A., Wagh R.D., Baviskar D.T., Shaikh T.J.

DOI: Not Available         Access: Open Access Read More

Author(s): V Rajesh Babu, Syeda Rana Nikhat, P Nivethithai, SH Areefulla

DOI: Not Available         Access: Open Access Read More

Author(s): R. Suresh, D. Benitojohnson, C. Maheswari, R. Venkatnarayanan, R.Manavalan

DOI: 10.5958/0974-360X.2017.00128.7         Access: Open Access Read More

Author(s): Vijayalakshmi. S , Disalva. X, Chittaranjan Srivastava, Arun A

DOI: 10.5958/0974-360X.2019.00520.1         Access: Open Access Read More

Author(s): Tapan Kumar Giri, Saumya Mishra, Dulal Krishna Tripathi

DOI: Not Available         Access: Open Access Read More

Author(s): Karthikeyan D, Vijayakumar S, Pandey V.P, Nandha Kumar J, Sengottuvelu S, T. Sivakumar T.

DOI:         Access: Open Access Read More

Author(s): H.B. Pagar, U.P. Shinde, Y.S. Agrawal, S.D. Barhate, T.S. Luhade, R.O. Sonawane

DOI: Not Available         Access: Open Access Read More

Author(s): Rao Rekha, Goswami Anju, Shekhar Shishant, Mahant Sheefali, Nanda Sanju

DOI: Not Available         Access: Open Access Read More

Author(s): Loveleen Preet Kaur, Rajeev Garg, GD Gupta

DOI: Not Available         Access: Open Access Read More

Author(s): A. Ashwatha Pratha, R. V. Geetha

DOI: 10.5958/0974-360X.2017.00240.2         Access: Open Access Read More

Author(s): Mahadeva Rao U.S., Suganya M. Utharkar, C. Shanmuga Sundaram

DOI: 10.5958/0974-360X.2015.00307.8         Access: Open Access Read More

Author(s): Jagdale Swati C., Hable Asawaree A., Kuchekar Bhanudas S., Chabukswar Aniruddha R.

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles