Author(s): MM Riyaniarti Estri W, Nashi Widodo, Edi Widjajanto, Yoga Dwi Jatmiko, Muhaimin Rifa’i

Email(s): rifa123@ub.ac.id

DOI: 10.5958/0974-360X.2020.01038.0   

Address: MM Riyaniarti Estri W1,2, Nashi Widodo1, Edi Widjajanto3, Yoga Dwi Jatmiko1, Muhaimin Rifa’i1*
1Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.
2Department of Biology, Faculty of Sciences, Technology and Analitycal, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Indonesia.
3Departement of Medicine, Faculity of Medicine, Brawijaya University, Malang Indonesia.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020


ABSTRACT:
Oxidative stress can occur due to an imbalance between increased free radical production and a decrease in antioxidant capacity. Reactive Oxygen Species (ROS) excess will react with biological macromolecules either proteins or DNA and potentially damage hepatocytes. Nrf- 2 activations can trigger the expression of anti-oxidative enzymes, such as HO-1 and SOD-2, which have important role in preventing inflammation. The purpose of this study was to look at the expressions of Nrf-2, HO-1, SOD-2, and histopathological features of Balb/C mice injected with Salmonella typhi after fermented extract administration of red Moringa oleifera. Data were analyzed by SPSS 22.0 ANOVA (p < 0.05) and followed by Duncan’s Multiple Range Test. The results showed that fermented extract of red Moringa oleifera leaves could act as an immunomodulatory agent characterized by increased expressions of Nrf-2, HO-1, and SOD-2. Here, we also showed the histology improvement in Salmonella- injected mice after received fermented extract of red Moringa oleifera.


Cite this article:
MM Riyaniarti Estri W, Nashi Widodo, Edi Widjajanto, Yoga Dwi Jatmiko, Muhaimin Rifa’i. Red Moringa oleifera leaf fermentation extract protecting Hepatotoxicity in Balb/C mice injected with Salmonella typhi through Nrf-2, HO-1, and SOD-2 signaling pathways. Research J. Pharm. and Tech. 2020; 13(12):5947-5952. doi: 10.5958/0974-360X.2020.01038.0

Cite(Electronic):
MM Riyaniarti Estri W, Nashi Widodo, Edi Widjajanto, Yoga Dwi Jatmiko, Muhaimin Rifa’i. Red Moringa oleifera leaf fermentation extract protecting Hepatotoxicity in Balb/C mice injected with Salmonella typhi through Nrf-2, HO-1, and SOD-2 signaling pathways. Research J. Pharm. and Tech. 2020; 13(12):5947-5952. doi: 10.5958/0974-360X.2020.01038.0   Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-12-53


REFERENCES:
1.    De Leblanc, A. D. M., C. M. Galdeano, C. A. Dogi, E. Carmuega, R. Weill, and G. Perdigon. Adjuvant effect of a probiotic fermented whey beverage in the protection against Salmonella enteritidis serovar Typhimurium infection: Mechanisms involved. Int. J. Immunopathol. Pharmacol. 2010; 23:1235–1244.
2.    Nuccio, S.P. et al. Typhoid. In the prokaryotes (Rosenberg, E et al., eds), pp. Springer. 2013; 375-399.
3.    Saul, A., Smith, T., & Maire, N. Stochastic Simulation of Endemic Salmonella enterica Serovar Typhi: The Importance of Long-Lasting Immunity and the Carrier State. PLoS ONE. 2013; 8(9).
4.    Abbas, A.K., A.H. Lichtman. Effector Mechanisms of Immune Responses. In: Cellular and Molecular Immunity. Abbas, A.K., A. H. Lichtman (eds.), Saunders, Philadelphia, Pennsylvania. 2003; Pp 241-345.
5.    H. Zhu, Z. Jia, H. Misra, and Y. R. Li, “Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence,” Journal of Digestive Diseases, 2012; 13: 133–142.
6.    D. Wu and A. Cederbaum, “Oxidative stress and alcoholic liver disease,” Seminars in Liver Diseases/2009; 29: 141–154.
7.    Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013; 83(6): 10291041
8.    Jaeschke, H., McGill, M.R., Ramachandran. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 2012; 44, 88–106.
9.    Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubule-interstitial nephropathy. Nephrol Dial transplant 2013.
10.    Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016; 73: 3221-47.
11.    Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer. 2003; 3, 768–780.
12.    Han, X., Shen, T., Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007; 8, 950–988.
13.    Na, H.K., Surh, Y.J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food. Chem. Toxicol. 2008; 46, 1271–1278.
14.    Scapagnini, G., Sonya, V., Nader, A.G., Calogero, C., Zella, D., Fabio, G. Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol. 2011.
15.    Chen, X.L., Kunsch, C. Induction of cytoprotective genes through Nrf2/ antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr. Pharm. Des. 2004; 10, 879–891.
16.    Rajanandh, M.G.; Satishkumar, M.N.; Elango, K.; Suresh, B. Moringa oleifera Lam. Herbal medicine for hyperlipidemia: A preclinical report. Asian Pac. J. Trop. Dis. 2012; 2, S790–S795.
17.    Moyo, B., Masika, P.J., Hugo, A., Muchenje, V., 2011. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology 10, 12925–12933.
18.    Pandey, A., R.D. Pandey., P. Tripathi., P.P. Gupta., J. Haider., S. Bhatt and A.V Singh. Moringa Oleifera Lam. (Sahijan) - A Plant with a Plethora of Diverse Therapeutic Benefits: An Updated Retrospection. Pandey et al. Medicinal Aromatic Plants. 2012.
19.    Bamishaiye, E.I.F.F., Olayemi, E.F., Awagu, Bamshaiye, O.M. Proximate and phytochemical composition of Moringa oleifera leaves at three stages of maturation. Advance Journal of Food Science and Technology 2011; 3: 233-237.
20.    Lakshminarayana, M., Shivkumar, H., Rimaben, P., Bhargava, V.K. Antidiarrhoeal activity of leaf extract of Moringa oleifera in experimentally induced diarrhea in rats. International Journal of Phytomedicine. 2011; 3: 68-74.
21.    Doughari JH, El-Mahmood AM, Manzara S. Studies on the antibacterial activity of root extracts of Carica papaya L. African Journal of Microbiology Research. 2007; 037-041
22.    Harimalala Andriambelo Nirina., Rasoarinanahary Miora., Porphyre Vincent., Hiol Abel., Remize Fabienne and Razanamparany Louisette., et al. Phytochemical Composition and Antioxidant Activity of Fermented Moringa oleifera Leaf Powder. European Journal of Nutrition & Food Safety. 2017; 1: 77-83
23.    Thierry N, Léopold T. Effect of Pure Culture Fermentation on Biochemical Composition of Moringa oleifera Lam Leaves Powders. Food and Nutrition Sciences. 2013; 4: 851-859.
24.    Djonu, A., Andayani, S., Nursyam, H. Identification of Moringa Oleifera Leaves Content Fermented By Rhizopus Oligosporus. International Journal of Scientific & Technology Research. 2018; Vol. 7, Issue 4
25.    Fonseca F.; Cenard S.; Passot S. Freeze-drying of lactic acid bacteria. Methods in Molecular Biology. 2015; 1257, 477-488.
26.    Dyszel, J L.; J N Smith., Darren E L.; Jitesh A S.; Matthew C S.; Mathew A V.; Glenn M Y.; dan Brian M.M.A. Salmonella Enterica Serovar typhimurium Can Detect Acyl Homoserine Lactone Production by Yersinia enterocolitica In Mice. Journal of Bacteriology. 2010; 192, 29-37.
27.    Fuadah, Y.; Djati, S.; Widyarti, S. Bioactivity of Sauropus androgynous and Elephantopus scaber to CD4+IL2+ and CD4+IL4+ T Cells Modulation in Balb/c Pregnant Mice Model of Typhoid. Journal Experimental Life of Sciences. 2015; 2.
28.    Rutherford A and Chung RT. Acute liver failure: Mechanisms of hepatocyte injury and regeneration. Semin Liver Dis 2008; 28: 167-74.
29.    Kamath PS, Jalihal A, Chakraborty A. Differentiation of typhoid fever from fulminant hepatic failure in patients presenting with jaundice and encephalopathy. Mayo Clin Proc. 2000; 75:462–466.
30.    Ding HQ, Zhou BJ, Liu L, Cheng S. Oxidative stress and metallothionein expression in the liver of rats with severe thermal injury. Burns 2002; 28:215–221.
31.    Limón-Pacheco J, Gonsebatt ME The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 2009; 674:137–147.
32.    Jaeschke H1, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev. 2012; 44(1):88-106
33.    T. M. Leung and N. Nieto, “CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease,” Journal of Hepatology, 2013; 58: 395–398.
34.    Itoh, K., Mimura, J., Yamamoto, M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 2010; 13: 1665–1678.
35.    Urrunaga, N.H., Jadeja, R.N., Rachakonda, V., Ahmad, D., McLean, L.P., Cheng, K., Shah, V., Twaddell, W.S., Raufman, J.P., Khurana, S. M1 muscarinic receptors modify oxidative stress response to acetaminophen-induced acute liver injury. Free Radical Biol. Med. 2015; 78, 66–81.
36.    Bakhautdin B, Das D, Mandal P, Roychowdhury S, Danner J, Bush K, Pollard K, Kaspar JW, Li W, Salomon RG, McMullen MR, Nagy LE. Protective role of HO-1 and carbon monoxide in ethanol-induced hepatocyte cell death and liver injury in mice. J Hepatol 2014; 61: 102937
37.    Truong, V.L., Ko, S.Y., Jun, M., Jeong, W.S. Quercitrin from Toona sinensis (Juss.) M. Roem attenuates acetaminophen-induced acute liver toxicity in HepG2 cells and mice through induction of antioxidant machinery and inhibition of inflammation. Nutrients 2016; 8: 1–16.
38.    Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Bio Med 2002; 33: 337–349.
39.    Nishino Y, Takemura S, Minamiyama Y, Kazuhiro H, Tetsuya O, Inoue M, Okada S and Kinoshita H. Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res 2003; 37: 373-379.
40.    Khan, N.M., Haseeb, A., Ansari, M.Y., Devarapalli, P., Haynie, S., Haqqi, T.M. Wogonin, a plant-derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human Osteoarthritis chondrocytes. Free Radical Biol. Med. 2017; 106: 288–301.
41.    Ma, Q. Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013; 53: 401–426.
42.    Hernandez, T., Estrella, I., Perez-Gordo, M., Alegria, E. G., Tenorio, C., Ruiz-Larrea, F., et al. Contribution of malolactic fermentation by Oenococcusoeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. Journal of Agricultural and Food Chemistry. 2007; 55: 5260–5266.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available