Author(s):
Amaq Fadholly, Arif N. M. Ansori, Teguh H. Sucipto
Email(s):
teguhharisucipto@staf.unair.ac.id
DOI:
10.5958/0974-360X.2020.00979.8
Address:
Amaq Fadholly1, Arif N. M. Ansori1, Teguh H. Sucipto2*
1Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia.
2Dengue Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, 60115, Indonesia.
*Corresponding Author
Published In:
Volume - 13,
Issue - 11,
Year - 2020
ABSTRACT:
Naringin is commonly found in citrus fruit and used as herbal medicines to many diseases, including cancer. Naringin can act as a suppresing and blocking agent in attempts to control cancer. The present overview conducted confirm information available describing naringin as a potential anticancer compound and its pharmacokinetics. Current literatures survey were obtained using Sciencedirect, Scopus, PubMed, SpringerLink, and Google Scholar. There have been some progress in the treatment using naringin as a drug associated with cancer cells inhibition. Naringin development in another shape is indispensable towards the potential effect of realistic therapies. More detailed studies regarding molecular mechanism are required.
Cite this article:
Amaq Fadholly, Arif N. M. Ansori, Teguh H. Sucipto. An Overview of Naringin: Potential Anticancer compound of Citrus Fruits. Research J. Pharm. and Tech. 2020; 13(11):5613-5619. doi: 10.5958/0974-360X.2020.00979.8
Cite(Electronic):
Amaq Fadholly, Arif N. M. Ansori, Teguh H. Sucipto. An Overview of Naringin: Potential Anticancer compound of Citrus Fruits. Research J. Pharm. and Tech. 2020; 13(11):5613-5619. doi: 10.5958/0974-360X.2020.00979.8 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-11-94
REFERENCES:
1. Shabani A. A review of anticancer properties of herbal medicines. 2016; 3(2): 1000160.
2. Fadholly A, Proboningrat A, Iskandar RPD, Rantam FA, Sudjarwo SA. In vitro anticancer activity Annona squamosa extract nanoparticle on WiDr cells. J Adv Pharm Technol Res. 2019; 10(4): 149-154.
3. Safarzadeh E, Sandoghchian S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014; 4: 421-427.
4. Dhanamani M, Devi SL, Kannan S. Ethnomedicinal plants for cancer therapy a review. Hygeia J D Med. 2011; 3: 1-10.
5. Tang HL, Yuen KL, Tang HM, Fung MC. Reversibility of apoptosis in cancer cells. British J Cancer. 2009; 100: 118-122.
6. Wong, RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011; 30(1): 87.
7. Proboningrat A, Fadholly A, Iskandar RPD, Achmad AB, Rantam FA, Sudjarwo SA. The potency of chitosan-based Pinus merkusii bark extract nanoparticles as anti-cancer on HeLa cell lines. Vet World. 2019; 12(10): 1616-1623.
8. Fadholly A, Ansori ANM, Jayanti S, Proboningrat A, Kusala MKJ, Putri N, Rantam FA, Sudjarwo SA. Cytotoxic effect of Allium cepa L. extract on human colon cancer (WiDr) cells: in vitro study. Research J Pharm and Tech. 2019; 12(7): 3483-3486.
9. Fadholly A, Ansori ANM, Proboningrat A, Kusala MKJ, Putri N, Soeharsono, Utomo B. Phaleria macrocarpa (Scheff.) boerl. pulp extract increases the sperm characteristics in Rattus norvegicus. Indian Vet J. 2019; 96(10): 32-35.
10. Roy A, Attre T, Bharadjava N. Anticancer agent from medicinal plants: a review. JBBooks, Poznań, Poland. 2017.
11. Job KM, Kiang TKL, Constance JE, Sherwin CMT, Enioutina EY. Herbal medicines: challenges in the modern world. Part 4. Canada and United States. Expert review of clinical pharmacology. 2016; 9(12): 1597-1609.
12. Newman DJ, Cragg GM. Natural products as sources as of new drugs over the last 25 years. J Nat Prod. 2007; 70(3): 461-477.
13. Zhu H, Gao J, Wang L, Qian K, Cai L. In vitro study on reversal of ovarian cancer cell resistance to ciplastin by naringin via the nuclear factor-kB signaling pathway. Exp Ther Med. 2018; 15(3): 2643-2648.
14. El-Desoky AH, Abdel-Rahman RF, Ahmed OK, El-Beltagi HS, Hattori M. Anti-inflamatory and antioxidant activities of naringin isolated from Carissa carandas L.: in vitro and in vivo evidence. Phytomedicine. 2018; 15(42): 126-134.
15. Sun X, Fengbo L, Xinglong MA, Jianxiong MA, Zhao B, Zhang Y, Yanjun L, Jianwei LV, Meng X. The effects of combined treatment with naringin and treadmill exercise on osteoporosis in ovariectomized rats. Sci Rep. 2015; 5: 13009.
16. Garćia-Salas P, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Guerra-Hernández E, García-Villanova B, Fernández-Gutiérrez A. Influence of technological processes on phenolic compounds, organic acids, furanic derivates, and antioxidant activity of whole lemon powder. Food Chem. 2013; 141(2): 869-878.
17. He D, Shan Y, Wu Y, Liu G, Chen B, Yao S. Simultaneous determination of flavanones, hydroxycinnamic acids and alkaloids in citrus fruits by HPLC-DAD-ESI/MS. Food Chem. 2011; 127(2): 869-878.
18. Kelebek H, Selli S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv Dortyol (Citrus sinensis L. Osbeck) orange juice. J Sci Food Agric. 2011; 91(10): 1855-1862.
19. Cano A, Medina A, Bermejo A. Bioactive compounds in different Citrus varieties. Discrimination amon cultivars. J Food Compos Anal. 2008; 21(5): 377-381.
20. Rafiq S, Kaul R, Sofi SA, Bashir N, Nazir F, Nayik GA. Citrus peel as a source of functional ingredient: a review. Journal of the Saudi Society of Agricultural Sciences. 2018; 17(4): 351-358.
21. Xu Q, Chen L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W, Hao B, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang J, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu X, Cheng Y, Xu J, Liu J, Luo OJ, Tang Z, Guo W, Kuang H, Zhang H, Roose ML. Nagarajan N, Deng X, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013; 45(1): 59-68.
22. Lv X, Zhao S, Ning Z, Zheng H, Shu Y, Tao O, Xiao C, Lu C, Liu Y. Citrus fruis as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J. 2015; 9: 68.
23. USDA: United States Department of Agriculture/Foreign Agricultural Service, 2019. Citrus: World Market and Trade. Available from: http://www.fas.usda.gov. Accessed 10.10.2019.
24. Li S, Wang H, Guo L, Zhao H, Ho CT. Chemistry and bioactivity of nobiletin and its metabolites. J Funct Foods. 2014; 6(1): 2-10.
25. Assini JM, Mulvihil EE, Sutherland BG. Naringenin prevents cholestrol-induced systemic inflamation, metabolic, dysregulation, and atherosclerosis in Ldlr/mice. J Lipid Res. 2013; 54(3): 711-724.
26. Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr. 2012; 31(3): 206-238.
27. Park E, Pezzuto JM. Flavonoids in cancer prevention. Anticancer Agents Med Chem. 2012; 12(8): 836-851.
28. Mulvihill EE, Huff MW. Citrus flavonoids and the prevention of artherosclerosis. Cardiovasc Hematol Disord: Drug Targets. 2012; 12(2): 84-91.
29. Meiyanto E, Hermawan A. Natural products for cancer targeted theraphy: citrus flavonoids as potent chemoprevenive agents. Asian Pac J Cancer Prev. 2012; 13(2): 427-436.
30. Auroma OI, Landes B, Ramful-Baboolall D. Functional benefits of citrus fruits in the management of diabetes. Prev Med. 2012; 54: 12-16.
31. Hwang SL, Shih PH, Yen GC. Neuroprotective effects of citrus flavonoids. J Agr Food Chem. 2012; 60(4): 877-885.
32. Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of citrus juices. Molecules. 2007; 12(8): 1641-1673.
33. Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. Flavonoid composition on fruit tissues of citrus species. Biosci Biotechnol Biochem. 2006; 70(1): 178-192.
34. Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agr Food Chem. 2008; 56(15): 6185-6205.
35. Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, Holden JM. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos a compilation and review of the data from the analytical literature. J Food Compos Anal. 2006; S66-S73.
36. Ribeiro IA, Ribeiro MHL. Naringin and narigenin determination and control in grapefruit juice by a validated HPLC method. Food Control. 2008; 19(4): 432-438.
37. Renugadevi J, Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology. 2009; 256(1-2): 128-134
38. Jung UJ, Kim HJ,Lee JS, Lee MK, Kim HO, Park EJ, Kim HK. Jeong TS, Choi MS. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr. 2003; 22(6): 561-568.
39. Zhang X, Li L, Xu Z, Liang Z, Su J, Huang J, Li B. Investigation of the interaction of naringin palmitate with bovine serum albumin: spectroscopic analysis and molecular docking. PloS One. 2013; 8(3): e59106
40. Martínez-Araya JI, Salgado-Morán G, Glossman-Mitnik D. Computational nutraceutics: chmemical reactivity properties of the flavonoid naringin by means of conceptual DFT. Journal of Chemistry. 2013; 850297.
41. Jourdan PS, McIntosh CA, Mansell RL. Naringin levels in citrus tissues II quantitative distribution of naringin in Citrus paradisi Macfad. Plant Physiol. 1985; 77: 903-908.
42. Albach RF, Juarez AT, Lime BJ. Time of naringin production in grapefruit. J Am Soc Hort Sci. 1969; 94: 605-609.
43. deLoudes MBM, Andrés-Lacueva C, Jáuregui O, Lamuela-Raventós RM. Determination of flavonoids in a citrus fruit extract by LC-DAD and LC-MS. Food Chem. 2007; 101(4): 1742-1747.
44. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M. HL-60 differentiating activity and flavonoid content of the readily extractble fraction prepared from citrus juices. J Agr Food Chem. 1999; 47(1); 128-135.
45. Ooghe WC,Ooghe SJ, Detavernier CM, Huyghebaert A. Characterization of orange juice (Citus sinensis) by flavanone glycosides. J Agr Food Chem. 1994; 42: 2183-2190.
46. Dhuique-Mayer C, Caris-Veyrat C, Ollitrault P, Curk F, Amiot MJ. Varietal and interspecific influence on micronutrient contents in citrus from the mediterranen area. J Agri Food Chem. 2005; 53(6): 2140-2145.
47. Lee S, Seo C, Kim J, Shin H. Contents of ponicrin and naringin in fruit of poncirus trifoliata according to different harvesting times and locations for two years. Korean J Pharmacognosy. 2011; 42(2): 138-143
48. Thomás-Barberán FA, Clifford MN. Flavanones, chacones and dihydrochalcones-nature, occurence and dietary burden. J Sci Food Agric. 2000; 80(7): 1073-1080
49. Naiara OL, Miriam MH, Anna VQ, Lamuela-Raventos RM, Elvira EF. High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br J Nutr. 2015; 114: 169-180.
50. Liu M, Zhou W, Yang C, Peng W, Su W. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharm Drug Dispos. 2012; 33(3): 123-134.
51. Hsiu SI, Huang TY, Hou YC, Chin DH, Chao PD. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci. 2002; 70(13): 1481-1489.
52. Matabilbao ML, Andréslacueva C, Roura E, Jáuregui O, Escribano E, Torre C. Absorption and pharmcokinetics of grapefruit flavanones in beagles. Br J Nutr. 2007; 98: 86-92.
53. Zheng X, Bai Y, Peng W, Su W. Identification of naringin metabolites in human urine and feces. Eur J Drug Metab Pharm. 2017; 42(4): 647-656.
54. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014; 15(1): 48-61.
55. Zheng X, Su W, Zheng Y, Liu H, Li P, Zhang W. UFLC-Q-TOF-MS/MS-based screening and identification of flavonoids and derivet metabolites in human urine after oral administration of Exocarpium Citri Grandis extract. Molecules. 2018; 23(4): E895.
56. Roowi S, Mullen W, Edwards CA, Crozier A. Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol Nutr Food Res. 2009; 53(1): 68-75.
57. Pereira-Caro G, Ludwig IA, Polyviou T, Malkova D, García A, Morenorojas JM. Identification of plasma and urinary metabolites and catabolites from orange juice (poly)phenols: analysis by high-performance liquid chromatography-high resolution mass spectometry. J Agr Food Chem. 2016; 64(28): 5742:5735.
58. Bharti S, Rani N, Krishnamurthy B, Arya DS. Preclinical evidencefor the pharmacological of naringin: a review. Planta Med. 2014; 80(6): 437-451
59. Li SQ, Dong S, Su ZH, Zhang HW, Peng JB, Yu CY, Zou ZM, Comparative pharmacokinetics of naringin in rat after oral administration of chaihu-shu-gan-san aqueous extract and naringin alone. Metabolites. 2013d; 3(4): 867-880.
60. Tsai Y, Tsai T. Mesentric lymphatic absorption and the pharmacokinetics of naringin and narigenin in the rat. J Agric Food Chem. 2012; 60(51)j: 12435-12442.
61. Jin Y, Tian T, Ma Y, Xu H, Du Y. Simultaneous determination of ginsenoside Rb 1, naringin, ginsenoside Rb 2 and oridonin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Weifuchun tablet. J Chromatogr B Analyt Technol Biomed Life Sci. 2015; 1000: 112-119.
62. Tsai TH. Determination of naringin in rat blood, brain, liver and bile using microdialysis and its interaction with cyclosporin a, a p-glycoprotein modulator. J Agr Food Chem. 2002; 50(23): 6669-6674.
63. Fuhr U, Kummert AI. The fate of naringin in humans: a key to grapefruit juice-drug interaction. Clin Pharmacol Ther. 1995; 58(4): 365-373.
64. Raha S, Yumnam S, Hong GE, Lee HJ, Saralama VVG, Park H, Heo JD, Lee SJ, Kim EHK, Kim GS. Naringin induces autophagy –mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MPAK pathway in AGS cancer cells. Int J Oncol. 2015; 47: 1061-1069.
65. Atta EM, Hegab KH, Abdelgawad AAM, Youssef AA. Synthesis, characterization and cytotoxic activity of naturally isolated naringin-metal complexes. Saudi Pharm J. 2019; 27(4): 584-592.
66. Banjerdphongchai R, Wudtiwai B, Khaw-on P. Induction of human hepatocellular carcinoma HepG2 cell apoptosis by naringin. Asian Pac J Cancer Prev. 2016; 17(7): 3289-3294.
67. Park K, Park H, Kim M, Hong G, Nagappan A, Lee B, Yumnam S, Lee W, Won C, Shin S, Kim G. Flavonoids indentified from Korean Citrus aurantium L. inhibit non-small cell lung cancer growth in vivo and in vitro. J Func Food. 2014; 7: 287-297.
68. Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives?. Nutrients. 2016; 8: 698.
69. Chen, R, Qi Q, Wang M, Li Q. Therapeutic potential of naringin: an overview. Pharm Biol. 2016; 54(12): 3203-3210.
70. Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res. 2019; 9(8): 1517-1535.
71. Wang L, Cai LP. Reversal of drug resistance and reversal mechanism of human ovarian cancer resistant SKOV3/DDP cells by naringin. J Clin Oncol. 2016; 21: 598-602.
72. An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic pathway as the therapeutic target for anticancer traditional chinese medicines. Front Pharmacol. 2019; 10: 758.
73. Zhang H, Hu J, Fu R, Liu X, Zhang Y, Li J, Liu L, Li Y, Deng Q, Luo Q, Ouyang Q, Gao N. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3ɤ mediated PI3K/AKT/Mtor/P70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep. 2018; 8: 11255.
74. Zheng X, Su W, Zheng Y, He Y, He Y, Rao H, Peng W, Yao H. Pharmacokinetics tissue distribution, metabolism, and excretion of naringin in aged rats. Front Pharmacol. 2019; 10: 34.
75. Kim DI, Lee SJ, Lee SB, Park K, Kim WJ, Moon SK. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis. 2008; 29(9): 1701-1709.
76. Lewinska A, Siwak J, Rzeszutek I, Wnuk M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol in Vitro. 2015; 29(3): 417-425.
77. Li H, Yang B, Huang J, Xiang t, Yin X, Wan J, Luo F, Zhang I, Li H, Ren G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting beta-catenin signaling pathway. Toxicol Lett. 2013; 220(3): 219-228.
78. Camargo, CA, Gomes-Marcondes MCC, Wutzuki NC, Aoyama H. Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor α levels in rats with walker 256 carcinoma. Anticancer Res. 2012; 32: 129-134.
79. Remesh E, Alshatwi AA. Naringin induces death receptor and mithocondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 2013; 51: 97-105.
80. Zheng L, Zhen Y, Chen YM Zhou L, Zhang Y, Hu F, Feng J, Shen J, Shen J, Wei B. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF‑κB/COX‑2‑caspase-1 pathway in HeLa cervical cancer cells. Int J Oncol. 2014; 45(5): 1929-1936.
81. Yoshinoga A, Kajiya N, Oishi K, Kamada Y, Ikeda A, Chigwechokha PK, Kibe T, Kishida M, Kishida S,Komatsu M. Neu3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation. Eur J Pharmacol. 2016; 782: 21-29.
82. Tan TW, Chou YE, Yang WH, Hsu CJ, Fong YC, Tang CH. Naringin surpress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. Int Immunopharmacol. 2014; 22(1): 107-114.
83. Mohamed EA, Hashim IIA, Yusif RM, Shaaban AAA, EL-Sheakh AR, Hamed MF, Badria FAE. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. Int J Nanomedicine. 2018; 19(13): 1009-1027.
84. Sequetto PL, Oliveira TT, Maldonado IR, Augusto LE, Mello VJ, Pizziolo VR, Almeida MR, Silva ME, Novaes RD. Naringin accelerates the regression of pre-neoplactic lession and the colorectal structural reorganization in a murine model of chemical carcinogenesis. Food Chem Toxicol. 2014; 64: 200-209.
85. Vanamala J, Leonardi T, Patil BS, Taddeo SS, Murphy ME, Pike LM, Chapkin RS, Lupton JR, Turner ND. Suppression of colon carcinogenesis by bioactive compounds in grapefruit. Carcinogenesis. 2006; 27(6): 1257-1265.
86. Zhang YS, Li y, Wang Y, Sun SY, Jiang T, Li C, Cui SX, Qu XJ. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in ApcMin/+ mouse model. J Cancer Res Clin Oncol. 2016; 142(5): 913-925.
87. Raha S, Yumnam S, Hong GE, Lee HJ, Saralamma VV, Park HS, Heo JD, Lee SJ, Kim EH, Kim JA. Naringin induces autophagy-mediated growth inhibiton by downregulating the PI3K/AKT/MTOR cascade via activation of MPAK pathways in AGS cancer cells. Int J Oncol. 2015; 47(3): 1061-1069.
88. Li J, Dong Y, Hao G, Wang B, Wang J, Liang Y, Liu Y, Zhen E, Feng D, Liang G. Naringin surpresses the development of glioblastoma by inhibiting FAK activity. J Drug Target. 2017; 25(1): 41-48.
89. Chen YC, Shen SC, Lin HY. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol. 2003; 66(7): 1139-1150.
90. Miller EG, Peacock JJ, Bourland TC, Taylor SE, Wright JM. Inhibition of oral carcinogenesis by citrus flavonoids. Nutr Cancer. 2008; 60(1): 69-74.
91. Cariňo-Cortés R, Alvarez-González I, Madrigal-Bujaidar E. Effect of naringin on the DNA damage induced by daunorubicin in mouse hepatocytes and cardiocytes. Biol Pharm Bull. 2010; 33(4): 697-701.
92. Xie CM, Chan WY, Yu S, Zhao J, Cheng CH. Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med. 2011; 51(7): 1365-1375.
93. Chen YJ, Chi CW, Su WC, Huang HL. Lapatinib induces autohagic cell death and inhibits growth of human hepatocellular carcinoma. Oncotarget. 2014; 5: 4845-4854.
94. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer. 1996; 26(2): 167-181.
95. Guthrie N, Carroll KK. Inhibition of mammary cancer by citrus flavonoids. Adv Exp Med Biol. 1998; 439: 227-236.