Author(s):
Sylvia Utami Tunjung Pratiwi, Hasyrul Hamzah
Email(s):
sylvia_pratiwi@ugm.ac.id
DOI:
10.5958/0974-360X.2020.00947.6
Address:
Sylvia Utami Tunjung Pratiwi1*, Hasyrul Hamzah2
1Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia.
2Faculty of Health and Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia.
*Corresponding Author
Published In:
Volume - 13,
Issue - 11,
Year - 2020
ABSTRACT:
Lerak (Sapindus rarak DC) is one of the native plants of Indonesia with saponin content in the seeds which has antibacterial activity, but the activity of antibiofilm has never been reported. Biofilms are one of the leading causes of chronic infection in humans, which results in a higher number of deaths. The diversity of microbes in polymicrobial biofilms causes chronic infections so that treatment is more complicated than monomicrobial biofilms. The discovery of candidates for anti-biofilm polymicrobial drugs is needed to overcome infections associated with biofilms. This study aims to determine the effectiveness of ethanol extracts of Lerak Lerak (Sapindus rarak DC) seeds in inhibiting the formation and degradation of Staphylococcus aureus polymicrobial biofilms, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Biofilm growth inhibition and degradation tests were determined using the microtiter broth method. The antibiofilm efficacy of ethanol extracts of lerak seeds towards polymicrobial biofilms was analyzed by calculating minimum biofilm inhibitory concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50) values. The mechanism of action of Lerak (Sapindus rarak DC) against polymicrobial biofilm was observed using scanning electron microscopy (SEM). Lerak seed (Sapindus rarak DC) ethanol extract provides 50% accommodation activity against polymicrobial biofilms in the 24 and 48-hour phases with a concentration of 0.5% b/v. Lerak seed ethanol extract is known to degrade 50% polymicrobial biofilms at a level of 0.5% b/v. Based on the results of scanning electron microscopy (SEM) ethanol extracts of lerak seeds can damage extracellular polymeric substances (EPS) polymicrobial biofilms. Therefore, lerak seed ethanol extract has the potential to be developed as a candidate for new antibiofilm drugs against polymicrobial biofilms.
Cite this article:
Sylvia Utami Tunjung Pratiwi, Hasyrul Hamzah. Inhibition and Degradation Activity of (Sapindus rarak seeds) ethanol extract against polymicrobial biofilm. Research J. Pharm. and Tech. 2020; 13(11):5425-5430. doi: 10.5958/0974-360X.2020.00947.6
Cite(Electronic):
Sylvia Utami Tunjung Pratiwi, Hasyrul Hamzah. Inhibition and Degradation Activity of (Sapindus rarak seeds) ethanol extract against polymicrobial biofilm. Research J. Pharm. and Tech. 2020; 13(11):5425-5430. doi: 10.5958/0974-360X.2020.00947.6 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-11-62
REFERENCES:
1. Agricultural Research and Development Agency, Center for research and development of plantations. LERAK (Sapindus rarak). 2009;15.
2. Silviani Y. Short Communication: Inhibitory effect of Sapindus rarak ethyl acetate extract on Staphylococcus aureus.: 3.
3. Hisham A. Abbas, Fathy M. Serry, Eman M. EL-Masry. Biofilms: The Microbial Castle of Resistance. Research J. Pharm. and Tech. 2013, (6),
4. Yadav A, Jha S. To study the effect of guava leaf extract on biofilm formation in. IOSR Journal Dent Med Sci. 2015;14(12):97.
5. Leriche V, Briandet R, Carpentier B. Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environ Microbiol. Januari 2003;5(1):64–71.
6. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. November 2010;5(11):1663–74.
7. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. Mei 2009;30(14):2782–9.
8. Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. Februari 2014;22(2):84–91.
9. Hamzah H, Pratiwi SUT, Hertiani T. Efficacy of Thymol and Eugenol Against Polymicrobial Biofilm. E Coli. 2018;29(4):8.
10. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. Nat Prod Rep. 17 2017;34(3):235–94.
11. Pierce CG, Uppuluri P, Tummala S, Lopez-Ribot JL. A 96 well microtiter plate-based method for monitoring formation and antifungal susceptibility testing of Candida albicans biofilms. J Vis Exp JoVE. 21 Oktober 2010;(44).
12. Pratiwi SUT, Hertiani T. Efficacy of massoia oil in combination with some Indonesian medicinal plants oils as anti-biofilm agent towards candida albicans. Int J Pharm Sci Res. 8:13.
13. Coyle B, Kavanagh K, McCann M, Devereux M, Geraghty M. Mode of anti-fungal activity of 1,10-phenanthroline and its Cu (II), Mn (II) and Ag (I) complexes. Biometals Int J Role Met Ions Biol Biochem Med. Juni 2003;16(2):321–9.
14. Atshan SS, Shamsudin MN, Lung LTT, Sekawi Z, Ghaznavi-Rad E, Pei CP. Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J Biomed Biotechnol. 2012; 2012:417247.
15. Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa Biofilm Formation. Proc Natl Acad Sci U S A. 2005;102(31):11076–81.
16. Cowan SE, Gilbert E, Liepmann D, Keasling JD. Commensal Interactions in a Dual-Species Biofilm Exposed to Mixed Organic Compounds. Appl Environ Microbiol. 1 Oktober 2000;66(10):4481–5.
17. de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. Februari 2009;11(2):279–88.
18. Harriott MM, Noverr MC. Importance of Candida–bacterial polymicrobial biofilms in disease. Trends Microbiol. November 2011;19(11):557–63.
19. Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. September 2009;53(9):3914–22.
20. Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems: Biofilm formation and interactions of bacterial strains. FEMS Microbiol Lett. 17 April 2008;283(1):83–90.
21. Cowan SE, Gilbert E, Liepmann D, Keasling JD. Commensal Interactions in a Dual-Species Biofilm Exposed to Mixed Organic Compounds
22. Wargo MJ, Hogan DA. Fungal--bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol. Agustus 2006;9(4):359–64.
23. Watrick P, Kolter R. Biofilm City of Microbes. J Bacteriol. 2000; 182:2675-2679.
24. Hamzah H, Hertiani T, Pratiwi SUT, Nuryastuti T. The Inhibition Activity of Tannin on the Formation of Mono-Species and Polymicrobial Biofilm Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. 2019;9.