Author(s): Anupam Sarma, Malay K. Das, Tapash Chakraborty, Sanjoy Das

Email(s): anupampharmacy@gmail.com

DOI: 10.5958/0974-360X.2020.00946.4   

Address: Anupam Sarma1,2*, Malay K. Das1, Tapash Chakraborty1, Sanjoy Das1
1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh- 786004, Assam, India.
2Pratiksha Institute of Pharmaceutical Sciences, Guwahati, 781026, Assam, India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 11,     Year - 2020


ABSTRACT:
Brain is one of the dominant reservoirs of HIV. Blood Brain Barrier (BBB) provides a great challenge in the delivery of Tenofovir disoproxil fumerate (TDF) to CNS after systemic administration which makes it clinically ineffective. The Intranasal route has a direct passage to the brain bypassing the BBB. So this novel TDF loaded biodegradable NLCs on intranasal administration has the potential to deliver TDF inside the brain in its therapeutic level. TDF is slightly soluble in water (13.4 mg/ml) and pump out by the endothelial layer of BBB. Present work was performed to develop TDF loaded NLCs composed of Compretol 888 ATO and oleic acid. The drug content and entrapment efficiencies were analyzed by UV analysis. The mean diameter of the NLCs was observed to be at 94.7 ± 15.70 nm with PDI of 0.380 ± 0.024 and 134.3 ± 9.71 nm with PDI of 0.358 ± 0.038 respectively for T4 and T5 NLC formulation. The shape of the NLCs were spherical in nature confirmed by TEM and SEM. The zeta potential value of -17.0± 3.87 mV and -17.17 ± 1.05 mV and %EE of 35.5 ± 1.04 % and 34.2 ± 2.78 % were found for T4 and T5 respectively. Stability study reveals the great stability of NLCs in the refrigerated condition and were found to be safe for IN administration as indicated by cytotoxicity study on bEnd.3 cell line and histopathology study on pig nasal mucosa. A sustained release profile of TDF from the NLCs in CSF was observed after in-vitro release study. In vivo pharmacokinetics study on rat plasma and brain implied the rapid availability of NLCs in the brain and gives higher MRT, Cmax, and AUC. These data indicate the brain localization and accumulation of NLCs delivering TDF in a sustained manner, which is confirmed by CLSM images of brain cryosections labeled with caumarin-6 NLCs. The results suggest that the developed NLCs have the potential to deliver TDF in the brain for long duration of time for the treatment of NeuroAIDS.


Cite this article:
Anupam Sarma, Malay K. Das, Tapash Chakraborty, Sanjoy Das. Nanostructured lipid carriers (NLCs)-based intranasal Drug Delivery System of Tenofovir disoproxil fumerate (TDF) for brain targeting. Research J. Pharm. and Tech. 2020; 13(11):5411-5424. doi: 10.5958/0974-360X.2020.00946.4


REFERENCES:
1.    Sharp PM, Hahn BH. Origins of HIV and the AIDS Pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841-a006841. doi:10.1101/cshperspect.a006841
2.    Where did HIV come from? | The AIDS Institute. https://www.theaidsinstitute.org/education/aids-101/where-did-hiv-come-0. Accessed January 3, 2020.
3.    Friedrich BM, Dziuba N, Li G, Endsley MA, Murray JL, Ferguson MR. Host factors mediating HIV-1 replication. Virus Res. 2011;161(2):101-114. doi:10.1016/j.virusres.2011.08.001
4.    Mishra AM, Shrivastav PK. The Strategies of Combating HIV / AIDS. 2009;1(1):4-7.
5.    Chauhan SS. The HIV/Aids Epidemic in India. Res J Sci Technol. 2015;7(2):133. doi:10.5958/2349-2988.2015.00018.2
6.    Sharma D, Bhattacharya J. Cellular and molecular basis of HIV-associated neuropathogenesis. Indian J Med Res. 2009;129:637-651. http://www.ijmr.org.in. Accessed August 20, 2019.
7.    E. BJ, C. AI, Peter S, Jeanne EB, Iain CA, Peter S. The Changing Pathology of NeuroAIDS Associated with Drug Abuse in the Era of HAART. Am J Infect Dis. 2006;2(2):39-48. doi:10.3844/ajidsp.2006.39.48
8.    McCombe JA, Noorbakhsh F, Buchholz C, Trew M, Power C. NeuroAIDS: a watershed for mental health and nervous system disorders. J Psychiatry Neurosci. 2009;34(2):83-85. http:// www.ncbi.nlm.nih.gov/pubmed/19270758. Accessed August 20, 2019.
9.    Peluffo H, Unzueta U, Negro-Demontel ML, et al. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv. 2015;33(2):277-287. doi:10.1016/ j.biotechadv.2015.02.004
10.    Gadhvi V, Brijesh K, Gupta A, Roopchandani K, Patel N. Nanoparticles for brain targeting. Res J Pharm Technol. 2013;6(5):454-458.
11.    Grabrucker AM, Chhabra R, Belletti D, et al. Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. In: ; 2013:71-89. doi:10.1007/7355_2013_22
12.    Baladaniya M, Karkar A, Patel N. Review on Drug Delivery to the Central Nervous System: Novel Approaches. Res J Pharm Dos Forms Technol. 2014;6(4):253-266.
13.    Sanghavi S, Polara M, Patel D, Shah R, Patel J, Patel M. Nanoparticle drug delivery to brain - A review. Res J Pharm Technol. 2012;5(1):8-13.
14.    Nikam PM, Gondkar SB, Saudagar RB. Brain Targeting Drug Delivery System: A Review. Asian J Res Pharm Sci. 2015;5(4):247. doi:10.5958/2231-5659.2015.00036.3
15.    Madhu A, Gowda K, Manjula B. Novel Therapies to Combat HIV: A Review. Res J Pharmacol Pharmacodyn. 2009;1(1):1-6.
16.    Varatharajan L, Thomas SA. The transport of anti-HIV drugs across blood–CNS interfaces: Summary of current knowledge and recommendations for further research. Antiviral Res. 2009;82(2):A99-A109. doi:10.1016/j.antiviral.2008.12.013
17.    Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008;127(2):97-109. doi:10.1016/j.jconrel.2007.12.018
18.    Anthonypillai C, Gibbs J, Thomas S. The distribution of the anti-HIV drug, tenofovir (PMPA), into the brain, CSF and choroid plexuses. Cerebrospinal Fluid Res. 2006;3(1):1-10. doi:10.1186/ 1743-8454-3-1
19.    Best BM, Letendre SL, Koopmans P, et al. Low Cerebrospinal Fluid Concentrations of the Nucleotide HIV Reverse Transcriptase Inhibitor, Tenofovir. JAIDS J Acquir Immune Defic Syndr. 2012;59(4):376-381. doi:10.1097/QAI.0b013e318247ec54
20.    Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release. 2014;189:133-140. doi:10.1016/j.jconrel.2014.06.053
21.    Pawde PK. Intranasal Route : A Novel Approach for CNS Delivery. Res J Pharm Technol. 2010;3(4):970-978.
22.    Lokhande SS. A Review on Intranasal Drug Delivery System with Recent Advancement. Res J Top Cosmet Sci. 2018;9(1):12. doi:10.5958/2321-5844.2018.00004.3
23.    Selvamuthukumar S, Velmurugan R. Nanostructured Lipid Carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis. 2012;11(1):159. doi:10.1186/1476-511X-11-159
24.    Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865-1883. doi:10.1517/17425247.2014.935335
25.    Ali M, Ali R, Bhatnagar A, Baboota S, Ali J. Donepezil nanosuspension intended for nose to brain targeting : In vitro and in vivo safety evaluation. Int J Biol Macromol. 2014;67:418-425. doi:10.1016/j.ijbiomac.2014.03.022
26.    Shah B, Khunt D, Misra M, Padh H. “Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* .” Int J Biol Macromol. 2016;89:206-218. doi:10.1016/ j.ijbiomac.2016.04.076
27.    Alam MI, Baboota S, Ahuja A, et al. Pharmacoscintigraphic evaluation of potential of lipid nanocarriers for nose-to-brain delivery of antidepressant drug. Int J Pharm. 2014;470(1-2):99-106. doi:10.1016/j.ijpharm.2014.05.004
28.    Jung Y-S, Kim C-S, Park H-S, et al. N-nitrosocarbofuran induces apoptosis in mouse brain microvascular endothelial cells (bEnd.3). J Pharmacol Sci. 2003;93(4):489-495. http:// www.ncbi.nlm.nih.gov/pubmed/14737022. Accessed August 20, 2019.
29.    Riss TL, Moravec RA, Niles AL, et al. Cell Viability Assays. Eli Lilly and Company and the National Center for Advancing Translational Sciences; 2004. http://www.ncbi.nlm.nih.gov/ pubmed/23805433. Accessed August 20, 2019.
30.    Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core – shell difunctional block copolymer mixed nanomicellar carriers : In vitro characterization , ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int J Pharm. 2013;452(1-2):300-310. doi:10.1016/ j.ijpharm.2013.04.084
31.    Kumar M, Shankar R, Chandra K, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol. 2013;61:189-195. doi:10.1016/j.ijbiomac.2013.06.041
32.    Pokharkar VB, Jolly MR, Kumbhar DD. Engineering of a hybrid polymer–lipid nanocarrier for the nasal delivery of tenofovir disoproxil fumarate: Physicochemical, molecular, microstructural, and stability evaluation. Eur J Pharm Sci. 2015;71:99-111. doi:10.1016/j.ejps.2015.02.009
33.    Zhang T, Sturgis TF, Youan B-BC. pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm. 2011;79(3):526-536. doi:10.1016/j.ejpb.2011.06.007
34.    Jayant R, Atluri V, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for theandamp;nbsp;treatment of neuroAIDS. Int J Nanomedicine. 2015;10:1077. doi:10.2147/IJN.S76517
35.    Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int J Pharm. 2012;423(2):543-553. doi:10.1016/ j.ijpharm.2011.11.036
36.    Singh S, Singh M, Tripathi CB, Arya M, Saraf SA. Development and evaluation of ultra-small nanostructured lipid carriers: novel topical delivery system for athlete’s foot. Drug Deliv Transl Res. 2016;6(1):38-47. doi:10.1007/s13346-015-0263-x
37.    Prabhakar C, Bala Krishna K. A review on polymeric nanoparticles. Res J Pharm Technol. 2011;4(4):496-498.
38.    Shivhare SC, Malviya KG, Jain V and Negi G. A Review on Liposomes as a Novel Drug Delivery System. Res J Pharma Dos Forms Tech. 2011;3(5):193-198.
39.    Kokatnur MG, Oalmann MC, Johnson WD, Malcom GT, Strong JP. Fatty acid composition of human adipose tissue from two anatomical sites in a biracial community. Am J Clin Nutr. 1979;32(11):2198-2205. doi:10.1093/ajcn/32.11.2198
40.    Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharmacy, Cairo Univ. 2015;53(2):147-159. doi:10.1016/J.BFOPCU.2015.10.001
41.    Haque S, Md S, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res. 2014;48(1):1-12. doi:10.1016/j.jpsychires.2013.10.011
42.    Sarma A, Das MK. Formulation by Design (FbD) approach to develop Tenofovir Disoproxil Fumarate loaded Nanostructured Lipid Carriers (NLCs) for the aptness of nose to brain delivery. J Drug Deliv Ther. 2019;9(2):148-159. doi:10.22270/jddt.v9i2.2391
43.    O’Reilly Beringhs A, Rosa JM, Stulzer HK, Budal RM, Sonaglio D. Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design. AAPS PharmSciTech. 2013;14(1):445-455. doi:10.1208/s12249-013-9930-8
44.    Khanolkar A, Thorat V, Raut P, Samanta G. Application of Quality by Design: Development to Manufacturing of Diclofenac Sodium Topical Gel. AAPS PharmSciTech. 2017;18(7):2754-2763. doi:10.1208/s12249-017-0755-8
45.    Jiang XG, Cui JB, Fang XL, Wei Y, Xi NZ. [Toxicity of drugs on nasal mucocilia and the method of its evaluation]. Yao Xue Xue Bao. 1995;30(11):848-853. http://www.ncbi.nlm.nih.gov/pubmed/ 8712011. Accessed August 20, 2019.
46.    Du G, Gao Y, Nie S, Pan W. The Permeation of Nalmefene Hydrochloride across Different Regions of Ovine Nasal Mucosa. Chem Pharm Bull (Tokyo). 2006;54(12):1722-1724. doi:10.1248/ cpb.54.1722
47.    Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: In vitro and in vivo studies. Acta Biomater. 2011;7(12):4169-4176. doi:10.1016/j.actbio.2011.07.025
48.    ElMeshad AN, Tadros MI. Transdermal Delivery of an Anti-Cancer Drug via W/O Emulsions Based on Alkyl Polyglycosides and Lecithin: Design, Characterization, and In Vivo Evaluation of the Possible Irritation Potential in Rats. AAPS PharmSciTech. 2011;12(1):1-9. doi:10.1208/s12249-010-9557-y
49.    Bondonna TJ, Jacquet Y, Wolf G. Perfusion-fixation procedure for immediate histologic processing of brain tissue. Physiol Behav. 1977;19(2):345-347. doi:10.1016/0031-9384(77)90351-1
50.    Gage GJ, Kipke DR, Shain W. Whole Animal Perfusion Fixation for Rodents. J Vis Exp. 2012;(65). doi:10.3791/3564
51.    Purvin S, Vuddanda PR, Singh SK, Jain A, Singh S. Pharmacokinetic and Tissue Distribution Study of Solid Lipid Nanoparticles of Zidovudine in Rats. J Nanotechnol. 2014;2014:1-7. doi:10.1155/2014/854018
52.    MAINARDES RM, PALMIRA D. GREMIÃO M. Reversed phase HPLC determination of zidovudine in rat plasma and its pharmacokinetics after a single intranasal dose administration. Biol Res. 2009;42(3):357-364. doi:10.4067/S0716-97602009000300010
53.    Sutar S V., More HN, Pishawikar SA, Bandgar SA, Raut ID. Validated RP-HPLC method development for estimation of Tenofovir Disoproxil Fumarate from plasma. Res J Pharm Technol. 2011;4(10):1626-1629.
54.    Yuan Z-Y, Hu Y-L, Gao J-Q. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats. Hussain S, ed. PLoS One. 2015;10(8):e0134722. doi:10.1371/journal.pone.0134722
55.    He C, Cai P, Li J, et al. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. J Control Release. 2017;246:98-109. doi:10.1016/ j.jconrel. 2016.12.019
56.    Yilmaz A, Price RW, Gisslen M. Antiretroviral drug treatment of CNS HIV-1 infection. J Antimicrob Chemother. 2012;67(2):299-311. doi:10.1093/jac/dkr492

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags