Author(s):
Alaa A. Gaafar, Mohsen S. Asker, Zeinab A. Salama, Farouk K. El-Baz
Email(s):
dr.gaafar2308@hotmail.com
DOI:
10.5958/0974-360X.2020.00944.0
Address:
Alaa A. Gaafar1, Mohsen S. Asker2, Zeinab A. Salama1, Farouk K. El-Baz1
1Plant Biochemistry Department, National Research Centre, Dokki, Giza, Egypt.
2Microbial Biotechnology Department, National Research Centre, Dokki, Giza, Egypt.
*Corresponding Author
Published In:
Volume - 13,
Issue - 11,
Year - 2020
ABSTRACT:
The present study aimed to evaluate the potential effects of the major polar and nonpolar extracts of Salix mucronata (S. Mucronata) as an antioxidant, antimicrobial, anti-inflammatory, and anticoagulant activities. The highest total phenolic, flavonoids, and tannins content were found to be 70.33±0.28mg GAE/g DW, 51.03±0.30 mg QE/g DW, and 42.89±0.10 TAE/g DW respectively in methanol extract. Several phenolic and flavonoid compounds were screened in the Salix ethyl acetate, acetone, and methanol extracts by HPLC. A number of chemical compounds were screened in the Salix hexane extract by the GC/MS method. Besides, the methanol extract showed a better DPPH•, ABTS•+scavenging activities and reducing power as compared to other extracts. While the acetone extract showed the highest Fe2+-chelating activity. The antibacterial and antifungal (antimicrobial) activities of Salix extracts (200, 400, 600µg/ml) were tested against eight microorganisms. Hexane and methanol showed high antimicrobial activity. All extracts exhibited both anti-inflammatory and anticoagulant activities and methanol extracts were superior compared to other extracts in the anti-inflammatory activity while the methanol and ethyl acetate extracts showed the highest anticoagulant activity in prothrombin time (PT) and activated partial thromboplastin time (APTT) tests. This study revealed that all extracts of Salix may be considered as a natural source for antioxidant, antimicrobial, anti-inflammatory, and anticoagulant agents for application in pharmaceutical and food industries related to the presence of various secondary metabolites.
Cite this article:
Alaa A. Gaafar, Mohsen S. Asker, Zeinab A. Salama, Farouk K. El-Baz. Advances of Polar and Nonpolar Extracts of Salix (Salix mucronata) and Their In-Vitro Biological Applications. Research J. Pharm. and Tech. 2020; 13(11):5396-5406. doi: 10.5958/0974-360X.2020.00944.0
Cite(Electronic):
Alaa A. Gaafar, Mohsen S. Asker, Zeinab A. Salama, Farouk K. El-Baz. Advances of Polar and Nonpolar Extracts of Salix (Salix mucronata) and Their In-Vitro Biological Applications. Research J. Pharm. and Tech. 2020; 13(11):5396-5406. doi: 10.5958/0974-360X.2020.00944.0 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-11-59
REFERENCES:
1. Khayyal MT, El-Ghazaly MA, Abdallah DM, Okpanyi SN, Kelber O, Weiser D. Mechanisms involved in the anti-inflammatory effect of a standardized willow bark extract. Arzneimittelforschung. 2005; 55(11): 677-687.
2. Hemati A, Azarnia M, Angaji AH. Medicinal effects of Heracleum persicum (Golpar). Middle-East Journal of Scientific Research. 2010; 5(3):174-176.
3. Wu J, Nyman T, Wang DC, Argus GW, Yang YP, Chen JH. Phylogeny of Salix subgenus Salix sl (Salicaceae): delimitation, biogeography, and reticulate evolution. BMC evolutionary biology. 2015; 15(1): 31.
4. Al Sherif EA, Amer WM, Khodary SE. Ecological studies on Salix distribution in Egypt. Asian Journal of Plant Science. 2009; 8(3): 230-234.
5. Kim CS, Subedi L, Park KJ, Kim SY, Choi SU, Kim KH, Lee KR. Salicin derivatives from Salix glandulosa and their biological activities. Fitoterapia, 2015; 106: 147–152.
6. Sultana S, Saleem M. Salix caprea inhibits skin carcinogenesis in murine skin: inhibition of oxidative stress, ornithine decarboxylase activity and DNA synthesis. Journal of ethnopharmacology. 2004; 91(2-3): 267-276.
7. Ahmed A, Shah WA, Akbar S, Younis M, Kumar D. A short chemical review on Salix caprea commonly Known as Goat willow. Int. J. Res. Phytochem. Pharmacol. 2011; 1(1): 17-20.
8. Pobłocka‐Olech L, Krauze‐Baranowska M, Głod D, Kawiak A, Lojkowska E. Chromatographic analysis of simple phenols in some species from the genus Salix. Phytochemical Analysis. 2010; 21(5): 463-469.
9. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews. 2010; 4(8): 118–126.
10. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16 (3): 144-158.
11. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999; 64(4): 555-559.
12. Polshettiwar SA, Ganjiwale RO, Wadher SJ, Yeole PG. Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian J Pharm Sci. 2007; 69(4): 574-576.
13. Goupy P, Hugues M, Boivin P, Amiot MJ. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric. 1999; 79(12): 1625-1634.
14. Mattila P, Astola J, Kumpulainen J. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem. 2000; 48(12): 5834-5841.
15. National Institute of Standards and Technology (NIST), 2010. NIST Standard Reference Database Number 69,http://webbook.nist.gov/chemistry/name-ser.html. Accessed 15.05.13.
16. Chu YH, Chang CL, Hsu HF. Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric. 2000; 80(5): 561-566.
17. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001; 73(2): 239-244.
18. Hsu CL, Chen W, Weng YM, Tseng CY. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem. 2003; 83(1): 85-92.
19. Kuda T, Tsunekawa M, Goto H, Araki Y. Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J Food Compos Anal. 2005; 18(7): 625-633.
20. Bhalodia NR, Shukla VJ. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethno medicinal plant. Journal of Advanced Pharmaceutical Technology & research. 2011; 2(2): 104–109..
21. Nisha MC, Subramanian MS, Prathyusha P, Santhanakrishnan R. Comparative studies on antimicrobial activity of Artemisia sieversiana Ehrhart. Ex. Willd. And Origanum vulgare L. International Journal of Pharm Tech Research. 2010; 2(2): 1124-1127.
22. Daoud A, Malika D, Bakari S, Hfaiedh N, Mnafgui K, Kadri A, Gharsallah N. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. Arabian Journal of Chemistry. 2019; 12(8): 3075-3086.
23. NCCLS. 1990 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 2nd Ed., Approved Standard NCCLS Document M7-A2, Villanova, PA.
24. Rahman H, Eswaraiah MC, Vakati K, Madhavi P. In vitro studies suggest probable mechanism of eucalyptus oil for anti-inflammatory and anti-arthritic activity. Int J Phyto Pharm. 2012; 2: 81-83.
25. Ekanayake PM, Nikapitiya C, De Zoysa M, Whang I, Kim SJ, Lee J. Novel anticoagulant compound from fermented red alga Pachymeniopsis elliptica. European Food Research and Technology. 2008; 227(3): 897-903.
26. Snedecor GW, Cochran WG. Statistical Methods. 9th Edn., Iowa State University Press, Ames, IA., USA, 1989.
27. Hukkanen AT, Polonen SS, Karenlampi SO, Kokko HI. Antioxidant capacity and phenolic content of sweet rowanberries. Journal of Agricultural and Food Chemistry. 2006, 54(1): 112-119.
28. Gaafar A, Asker M, Salama Z, Bagato O, Ali M. In-vitro, antiviral, antimicrobial and antioxidant potential activity of tomato pomace. International Journal of Pharmaceutical Sciences Review and Research. 2015a; 32(2): 262-272.
29. Gaafar AA, Ibrahim EA, Asker MS, Moustafa AF, Salama ZA. Characterization of Polyphenols, Polysaccharides by HPLC and Their Antioxidant, Antimicrobial and Antiinflammatory Activities of Defatted Moringa (Moringa oleifera L.) Meal Extract. International Journal of Pharmaceutical and Clinical Research. 2016; 8(6): 565-573.
30. Repo-Carrasco-Valencia R, Hellström JK, Pihlava JM, Mattila PH. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry. 2010; 120(1): 128-133.
31. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews. 1998; 56(11): 317-333.
32. Ahmad S, Ullah F, Sadiq A, Ayaz M, Imran M, Ali I, Zeb A, Ullah F, Shah MR. Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complementary and Alternative Medicine. 2016; 16(1): 29.
33. Naczk M, Shahidi F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis. 2006; 41(5): 1523-1542.
34. Nyman T, Julkunen-Tiitto R. Chemical variation within and among six northern willow species. Phytochemistry. 2005; 66(24): 2836-2843.
35. Gaafar AA, Salama ZA, Askar MS, El-Hariri DM, Bakry BA. In Vitro antioxidant and antimicrobial activities of Lignan flax seed extract (Linum usitatissimum, L.). Int. J. Pharm. Sci. Rev. Res. 2013; 23(2): 291-297.
36. Gaafar AA, Mahmoud KM, Salama ZA. Antioxidant potential activity and cytotoxicity effects of different parts of peanuts (Arachis hypogaea L.). International Journal of Pharma and Bio Sciences. 2015b; 6(3): 19-32.
37. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology. 2004; 26(2): 211-219.
38. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry. 1998; 46(5): 1887-1892.
39. Skerget M, Kotnik P, Hadolin M, Hras AR, Simonic M, Knez Z. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry. 2005; 89(2): 191-198.
40. Repetto MG, Ossani G, Monserrat AJ, Boveris A. Oxidative damage: the biochemical mechanism of cellular injury and necrosis in choline deficiency. Experimental and Molecular Pathology. 2010; 88(1): 143-149.
41. Ibrahim EA, Gaafar AA, Salama ZA, El Baz FK. Anti-inflammatory and antioxidant activity of Solenostemma argel extract. International Journal of Research in Pharmacology and Phytochemistry. 2015; 7(4): 635-641.
42. Oktay M, Gulçin I, Kufrevioglu OI. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Science and Technology. 2003; 36(2): 263-271.
43. Oyaizu M. “Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine,” Japanese Journal of Nutrition. 1986; 44(6): 307-315. 198
44. Djihane B, Wafa N, Elkhamssa S, Maria AE, Mihoub ZM. Chemical constituents of Helichrysum italicum (Roth) G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharmaceutical Journal. 2017; 25(5): 780-787.
45. Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Oh H, Hong J, Yoon Y, Choi KH. Evaluation on antimicrobial activity of psoraleae semen extract controlling the growth of gram-positive bacteria. Korean Journal for Food Science of Animal Resources. 2017; 37(4): 502-510.
46. Kaneria M, Kanani B, Chanda S. Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants. Asian Pacific Journal of Tropical Biomedicine. 2012; 2(3): 195-202.
47. Chew AL, Jessica JJ, Sasidharan S. Antioxidant and antibacterial activity of different parts of Leucas aspera. Asian Pacific Journal of Tropical Biomedicine. 2012; 2(3): 176-180.
48. Furneri PM, Marino A, Saija A, Uccella N, Bisignano G. In vitro antimycoplasmal activity of oleuropein. International Journal of Antimicrobial Agents. 2002; 20(4): 293-296.
49. Corti A, Gasparri A, Sacchi A, Curnis F, Sangregorio R, Colombo B, Siccardi AG, Magni F. Tumor targeting with biotinylated tumor necrosis factor α: structure-activity relationships and mechanism of action on avidin pretargeted tumor cells. Cancer Research. 1998; 58(17): 3866-3872.
50. Wahab AG, Sallam A, Elgaml A, Farid Lahloub MS, Afif M. Antioxidant and antimicrobial activities of Salix babylonica extracts. World J. Pharm. Pharm. Sci. 2018; 6: 1-6.
51. Dorman HJ, Deans SG. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology. 2000; 88(2): 308-316.
52. Popova TP, Kaleva MD. Antimicrobial Effect in vitro of Aqueous Extracts of Leaves and Branches of Willow (Salix babylonica L.). International Journal of Current Microbiology and Applied Sciences. 2015; 4(10):146-152.
53. Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Current Cancer Drug Targets. 2008; 8(7): 634-646.
54. Seelinger G, Merfort I, Wolfle U, Schempp CM. Anti-carcinogenic effects of the flavonoid luteolin. Molecules. 2008; 13(10): 2628-2651.
55. Khodaie L, Delazar A, Nazemiyeh H. Biological Activities and Phytochemical Study of Pedicularis wilhelmsiana Fisch Ex. From Iran. Iranian Journal of Pharmaceutical Research: IJPR. 2019; 18(1): 339–347.
56. Tian C, Zhang P, Yang C, Gao X, Wang H, Guo Y, Liu M. Extraction process, component analysis, and in vitro antioxidant, antibacterial, and anti-inflammatory activities of total flavonoid extracts from abutilon theophrasti medic. Leaves. Mediators of Inflammation. 2018; 2018, 3508506.
57. Vadivu R, Lakshmi KS. In-vitro and in-vivo anti-inflammatory activity of leaves of Symplocos cochinchinensis (Lour) Moore ssp Laurina. Bangladesh Journal of Pharmacology. 2008; 3(2): 121-124.
58. Zhou Y, Hong Y, Huang H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney and Blood Pressure Research. 2016; 41(6): 901-910.
59. Qin F, Sun HX. Immunosuppressive activity of Pollen Typhae ethanol extract on the immune responses in mice. Journal of Ethnopharmacology. 2005; 102(3): 424-429.
60. Nahrstedt A, Schmidt M, Jäggi R, Metz J, Khayyal MT. Willow bark extract: the contribution of polyphenols to the overall effect. Wiener Medizinische Wochenschrift. 2007; 157(13-14): 348-351.
61. Mekhfi H, El Haouari M, Legssyer A, Bnouham M, Aziz M, Atmani F, Remmal A, Ziyyat A. Platelet anti-aggregant property of some Moroccan medicinal plants. Journal of Ethnopharmacology. 2004; 94(2-3): 317-322.
62. Vane JR, Botting RM. The mechanism of action of aspirin. Thrombosis Research. 2003; 110(5-6): 255-258.
63. Sirridge MS and Shannon R. Hematology Principles and Procedures. Lea and Febiger, Philadelphia. 1993; 6th ed: pp.202-278.
64. He FJ, Nowson CA, Lucas M, MacGregor GA. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. Journal of Human Hypertension. 2007; 21(9): 717-728.
65. Pignatelli P, Pulcinelli FM, Celestini A, Lenti L, Ghiselli A, Gazzaniga PP, Violi F. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. The American Journal of Clinical Nutrition. 2000; 72(5): 1150-1155.
66. Vilahur G, Badimon L. Antiplatelet properties of natural products. Vascular Pharmacology. 2013; 59(3-4): 67-75.
67. Omar G, Abdallah L, Barakat A, Othman R, Bourinee H. In-vitro haemostatic efficacy of aqueous, methanol and ethanol plant extracts of three medicinal plant species in Palestine. Brazilian Journal of Biology. 2019, A head of Print.