Author(s):
Subhashree Singh, Bhaskar Chandra Sahoo, Subrat Kumar Kar, Ambika Sahoo, Sanghamitra Nayak, Basudeba Kar, Suprava Sahoo
Email(s):
supi.sos2000@gmail.com , basu.cbt@gmail.com
DOI:
10.5958/0974-360X.2020.00834.3
Address:
Subhashree Singh1, Bhaskar Chandra Sahoo1, Subrat Kumar Kar2, Ambika Sahoo1, Sanghamitra Nayak1, Basudeba Kar1*, Suprava Sahoo1*
1Center For Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar- 751003, Odisha, India.
2Regional Plant Resource Centre (RPRC), Bhubaneswar, Odisha, India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 10,
Year - 2020
ABSTRACT:
Introduction: Alpinia galanga and Alpinia calcarata are two important medicinal plants having diverse therapeutic value. The objective of the present work was to analyze different bioactive constituents present in the methanolic leaf and rhizome extracts of A. galanga and A. calcarata Methods: Gas Chromatography-Mass Spectrometry (GC-MS) analysis was carried out for determining the phytoconstituents present in both the plants. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) of these extracts were also determined using the Folin-Ciocalteu and aluminium chloride colorimetric method. Results: The major phytochemical constituents found in leaf extracts of A. galanga were benzenepropanal (37.35±0.5%) and 3-phenyl-2-butanone (20.49±0.6%) whereas, rhizome extract contain carotol (17.44±0.3%), Eucalyptol (13.89±0.2%), 5-hydroxymethylfurfural (11.28±0.3%) as major constituents. Similarly, major constituents of leaf extract in A. calcarata were olealdehyde (32.41±0.95%), hexadecanal (31.84±0.34%), phytol (11±0.52%), 9-hexadecenal (10.06±0.12%) whereas hydroquinone (44.17±0.36%) and pyranone (6.19±0.35%) were found to be maximum in rhizome extract. TPC and TFC of leaf extract of A. galanga was found to be highest (77.25±1.56mg GAE/g of the extract and 64.69±1.12 mg Quercetin equivalent/ g of extract respectively) in comparison with A. calcarata extracts. Conclusion: A. galanga and A. calcarata have furnished an array of phytoconstituents which could be responsible for a wide range of bioactivities. These findings could give new direction towards future pharmacological investigations.
Cite this article:
Subhashree Singh, Bhaskar Chandra Sahoo, Subrat Kumar Kar, Ambika Sahoo, Sanghamitra Nayak, Basudeba Kar, Suprava Sahoo. Chemical constituents Analysis of Alpinia galanga and Alpinia calcarata. Research J. Pharm. and Tech. 2020; 13(10):4735-4739. doi: 10.5958/0974-360X.2020.00834.3
Cite(Electronic):
Subhashree Singh, Bhaskar Chandra Sahoo, Subrat Kumar Kar, Ambika Sahoo, Sanghamitra Nayak, Basudeba Kar, Suprava Sahoo. Chemical constituents Analysis of Alpinia galanga and Alpinia calcarata. Research J. Pharm. and Tech. 2020; 13(10):4735-4739. doi: 10.5958/0974-360X.2020.00834.3 Available on: https://rjptonline.org/AbstractView.aspx?PID=2020-13-10-37
REFERENCES:
1. Ahmedulla M., Nayar M.P (1999) Red data book of Indian plants. Peninsular India. Calcutta: Botanical Survey of India, 4.
2. Mahae N., Chaiseri S (2009). Antioxidant activities and antioxidative components in extracts of Alpinia galanga (L.) Sw. Kasetsart. J Nat Sci. 43: 358-69.
3. Rao K., Ch B., Narasu L.M., Giri A (2010). Antibacterial activity of Alpinia galanga (L) Willd crude extracts. Appl. Biochem. Biotechnol. 162(3): 871-84.
4. Borthakur M.I., Hazarika J., Singh R.S (1998). A protocol for micropropagation of Alpinia galanga. Plant Cell Tissue Organ Cult. 55(3): 231-3.
5. Subash K.R., Prakash G.B., Reddy K.V., Manjunath K., Rao K.U (2016). Anti-inflammatory activity of ethanolic extract of Alpinia galanga in carrageenan induced pleurisy rats. Natl. J. Physiol. Pharm. Pharmacol. 6(5): 468.
6. Ye Y., Li B (2006). 1′ S-1′-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J. Gen. Virol. 87(7): 2047-53.
7. Rahman M.A., Islam M.S (2015). Alpinia calcarata Roscoe: A potential phytopharmacological source of natural medicine. Pharmacognosy Reviews. 9(17): 55.
8. Arambewela L.S., Arawwawala L.D., Ratnasooriya W.D (2004). Antinociceptive activities of aqueous and ethanolic extracts of Alpinia calcarata rhizomes in rats. J. Ethnopharmacol. 95: 311-6.
9. Robertson D.G (2005). Metabonomics in toxicology: a review. Toxicol. Sci. 85(2): 809-22.
10. Kell D.B., Brown M., Davey H.M., Dunn W.B., Spasic I., Oliver S.G (2005). Metabolic foot printing and systems biology: the medium is the message. Nat. Rev. Microbiol. 3: 557.
11. Kokate C.K (1994). Practical Pharmacognosy, Vallabh Prakashan, 1st ed. New Delhi, India.
12. Harborne J.B (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 3rd ed. Chapman and Hall, London.
13. Sahoo S., Ghosh G., Das D., Nayak S (2013). Phytochemical investigation and in vitro antioxidant activity of an indigenous medicinal plant Alpinia nigra B.L. Burtt. Asian Pac. J. Trop. Biomed. 3, 871-876.
14. Mathew S., Abraham T.E (2006). In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food. Chem. Toxicol. 44(2): 198-206.
15. Singh R., Singh S., Kumar S., Arora S (2007). Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. A. Cunn. Food. Chem. Toxicol. 45(7): 1216-23.
16. Kanjilal P.B., Kotoky R., Couladis M (2010). Essential Oil composition of leaf and rhizome oil of Alpinia nigra (Gaertner) BL Burtt. from Northeast India. J. Essent. Oil. Res. 22(4): 358-9.
17. Bhuiyan M.N., Begum J (2011). Volatile constituents of essential oils isolated from different parts of Alpinia calcarata Rosc. Afr. J. Plant. Sci. 5(15): 887-9.
18. Jasicka-Misiak I., Lipok J., Nowakowska E.M., Wieczorek P.P., Młynarz P., Kafarski P (2004). Antifungal activity of the carrot seed oil and its major sesquiterpene compounds. Z. Naturforsch. C Bio. Sci. 59: 791-6.