Author(s): Leo DencelinX, Ramkumar T


DOI: 10.5958/0974-360X.2017.00564.9   

Address: Leo DencelinX1*, Ramkumar T2
1Research Scholar, Department of Computer Science & Engineering, Sathayabama University, Chennai, India.
2Associate Professor, School of Information Technology & Engineering, VIT University, Vellore, India.
*Corresponding Author

Published In:   Volume - 10,      Issue - 9,     Year - 2017

The arena of secondary structure based drug design is an evolving area in recent years. Structures help us to understand how the protein functions, and will help to design chemicals to be used pharmaceutically as modifiers of enzyme activity. X-Ray structures usually provide us with a quite static picture of the protein which is considered as expensive and time consuming. The recent modern drug design and development using knowledge of proteomics must rely on computational intelligence based machine learning model structures using efficient structure prediction techniques. In recent years, Machine learning, emerging on the basis of parallel and distributed computing for handling big data, is making huge advances in many areas. In this paper, we have captured a comprehensive review of protein structure prediction methods using Machine Learning approach in Distributed environment. Overall, the results are good and depicts that the accuracy and performance of protein secondary structure prediction methods are achieved using Machine Learning techniques and these would become a powerful aid, while implemented in Distributed environment like Hadoop or Spark. This research will be helpful for the recent medicine researchers, which aids in understanding the relation between protein sequences, structure and thereby determine the function to develop various drugs and designing novel enzymes and this is considered as one of the major focused areas in recent bioinformatics research.

Cite this article:
Leo DencelinX, Ramkumar T. Distributed Machine Learning Algorithms to classify Protein secondary structures for Drug Design – A Survey. Research J. Pharm. and Tech. 2017; 10(9): 3173-3180. doi: 10.5958/0974-360X.2017.00564.9

Recomonded Articles:

Author(s): Meenakshi K, Safa M, Karthick T, Sivaranjani N

DOI: 10.5958/0974-360X.2017.00253.0         Access: Open Access Read More

Author(s): T. Arunkumar, Ann Feba Ebby, G. Narendrakumar

DOI: 10.5958/0974-360X.2017.00441.3         Access: Open Access Read More

Author(s): Shyamala Devi M, Sruthi A. N, Saranya Jothi C

DOI: 10.5958/0974-360X.2018.00080.X         Access: Open Access Read More

Author(s): Sushant S Dhavale, AV Bhosle, SR Hardikar, Tushar R Kotkar

DOI:         Access: Open Access Read More

Author(s): S. Kavitha, T. Sabhanayagham, R. Thenmozhi

DOI: 10.5958/0974-360X.2018.00415.8         Access: Open Access Read More

Author(s): Prabha T, Aishwaryah P, Manickavalli E, Chandru R, Arulbharathi G, Anu A, Sivakumar T

DOI: 10.5958/0974-360X.2019.00663.2         Access: Open Access Read More

Author(s): Assem B. Uzakova, Lyudmila A. Kayukova, Bladimir B. Poroikov, Kaldybai D. Praliev

DOI: 10.5958/0974-360X.2018.00736.9         Access: Open Access Read More

Author(s): Elizabeth Mary Mathew, Pragna Rao, Raghavendra Shetty, Leslie Lewis, Sudheer Moorkoth

DOI: 10.5958/0974-360X.2019.00695.4         Access: Open Access Read More

Author(s): Basil K Varghese, Geraldine Bessie Amali D, Uma Devi K S

DOI: 10.5958/0974-360X.2019.00114.8         Access: Open Access Read More

Author(s): Himanshu Singh, Nooman Siddique, Atul Kumar Upadhyay

DOI: 10.5958/0974-360X.2020.00314.5         Access: Closed Access Read More

Author(s): K. C Panda , A. V Reddy, N. Panda, MD Shamim, M. Habibuddin, K.N Jayaveera

DOI: 10.5958/0974-360X.2018.00050.1         Access: Open Access Read More

Author(s): Pradeep K. Sharma, Sabiha Mansoori

DOI: 10.5958/0974-360X.2019.00358.5         Access: Open Access Read More

Author(s): Justin Antony, Satadal Debroy, Chennu Manisha, Peet Thomas, Victoria Jeyarani, Tenzin Choephel

DOI: 10.5958/0974-360X.2019.00367.6         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles