ABSTRACT:
Let R be a 2, 3-torsion free prime ring. Let D:(.,.):R×R?Rand dbe a symmetric reverse bi-derivation and the trace of D respectively.If d is commuting orcentralizing on R.Then D=0.LetD_1:(.,.):R×R?R,? D?_2:(.,.):R×R?R aresymmetric reverse bi-derivations and B(.,.):R×R?R be a symmetric bi-additive mapping. If D_1 (d_2 (x),x)=0 and d_1 (d_2 (x) )=f(x), for all x?R, where d_1,? d?_2and f are the traces ofD_1,? D?_2 and B. In this case either D_1=0or D_2=0.
Cite this article:
C. Jaya Subba Reddy, M. Ramakrishna Naik. Symmetric Reverse Bi-Derivations on Prime Rings. Research J. Pharm. and Tech 2016; 9(9):1496-1500. doi: 10.5958/0974-360X.2016.00291.2
Cite(Electronic):
C. Jaya Subba Reddy, M. Ramakrishna Naik. Symmetric Reverse Bi-Derivations on Prime Rings. Research J. Pharm. and Tech 2016; 9(9):1496-1500. doi: 10.5958/0974-360X.2016.00291.2 Available on: https://rjptonline.org/AbstractView.aspx?PID=2016-9-9-54