Accumulation of heavy metals in fish and their impacts on human health: A Systematic Literature Review
Samar Aarabi, Oussama Chauiyakh, Oumaima Ninich, Kamal Kettani, Aziz Et-tahir
Materials, Energy and Acoustics Team, High School of Technology Sale,
Mohammed V University in Rabat, Morocco Samar.
*Corresponding Author E-mail: aarabi1@gmail.com
ABSTRACT:
KEYWORDS: Estuary, Toxicology, Fish, Human-health, Heavy metals.
INTRODUCTION:
Metals are present in the aquatic environment due to both natural processes and human activities1. In the context of anthropogenic activities, metal concentrations could be increased by rapid industrialization and urbanization on the one hand2, on the other hand the massive exploitation of agricultural land use which could also be associated to influence on land runoff3.
We took as a first example, the environmental problem due to heavy metals that occurred, from 19524, a few kilometers from the Japanese fishing port of Minimata5. Untiltime unknown disease (Minimata disease) appeared and quickly became an epidemic and was found to be due to organomercuric compounds6.
The detection and determination of these heavy metals is therefore of considerable importance not only to establish their potentially negative influence on ecosystems7 but also the impact on the human community8.
From an economic point of view, the estuary represents a traditionally very active fishing area9. In oceanic coastal regions10, heavy metals are generally naturally present in the sea, especially in river estuaries11. Some of them are even essential for the growth and development of any aquatic species12. Currently additional amounts of metals can be various in the environment13. These come from industrial activity linked to high-density urban areas14.
The Bouregreg estuary which receives much polluted wastewater, loaded with metallic elements such as Pb, Zn, Cd, Cu or Fe15. Studies have been carried out on the waters, sediments and fauna of the Bouregreg estuary7, and clearly demonstrated high levels of heavy metals16.
Valley Bouregreg is the second important valley in Morocco, originates in the Middle Atlas at an altitude of 1627m. This basin is drained by three main hydrological arteries: Valley Bouregreg, Valley Grou and Valley Korifla, plus a large dam (Sidi Med Ben Abdellah) built a few kilometers before the estuary.
Valley Bouregreg on the Moroccan Atlantic coast, known for its significant ecological diversity, due to its reception of a large number of fauna species (invertebrates, fish, birds) and a diversified flora (phanerogams, algae), which are of great interest for Moroccan, Maghreb and Atlantic biodiversity17.
The Sidi Mohammed Ben Abdellah dam was built 24km upstream from the Bouregreg estuary. This completely disrupted the functioning of the ecosystem of the Bouregreg estuary. Since 2006, the Bouregreg estuary has recognized the Bouregreg valley development project, among these works the marina, the large Burj Mohammed VI, the extension of the Rabat-Salé tramway network and the large theater.
Figure 1: The map of the Bouregreg estuary and its location in Morocco QGIS
REVIEW METHODOLOGY:
In general, the SLR (Systematic Literature Review) is produced on the basis of scientific knowledge of literature in order to select, differentiate and analyze the specific studies published. The necessary measures are described, focusing on the potential prospects in relation to the problems posed11. SLR was designed to summarize the state of the art of a heavy metals issue and the health impact on humans.
This study deals with a literature review on "The accumulation of heavy metals in fish and the health impact on humans" from journals indexed in several databases such as Scopus(figure 2).
Figure 2: Paper selection process
The selected articles were collected in the Zotero tool in order to recover their metadata. Then the article summaries with their metadata were exported from Zotero to Microsoft Excel software for analysis (Figure 3).
Figure 3: Methodological steps of the systematic literature review
MATERIAL AND TECHNIQUE:
a) Technical:
The fish are immediately kept in a cooler containing dry ice cubes to prevent the deterioration of its nature18. After preserving the samples, they must be classified and identified and then classified according to their sex19, species and size20. In the laboratory, the samples were dissected using dissection aimed at then separating the muscle and liver tissues21. Liver tissue has been used to represent heavy metal storage in fish bodies, while muscle tissue is the edible part that serves as the main route of heavy metal exposure in humans8.
Fish samples (whole body or fish fillets) are thoroughly washed with purified distilled water22. The fish organisms were dissected and quickly removed and washed again with purified distilled water23. A fillet of dorsal muscle, as well as the liver and the gonads are then taken from each individual, dried in the oven at 80° C. for about 24 hours. To constant weight24, each sample is then packaged in a heat-sealed, numbered plastic bag, and then stored in the freezer at -18°C for subsequent analysis25.
The determinations were all made within a period that did not exceed eighteen months of storage26. The dried samples were homogenized by grinding before lyophilization in a porcelain mortar, wrapped with weighing paper and then stored in a desiccator for future analysis27. Lyophilization of the tissues is done for 48–72 hours28. After this process, samples were powdered using liquid nitrogen and a mortar and pestle29. And finally the acid digestion procedure for the liquefaction of the samples consisted in digesting 100 mg of sample treated with 2ml of HNO3:H mixture. ClO3 for 3 hours in a Teflon reactor at 110°C30.
b) Equipment:
To perform heavy metal analyzes in fish organisms, researchers use inductively coupled plasma optical emission spectrometry31, others prefer to analyze samples using an atomic absorption spectrometry30.
Data Analysis:
Bibliometric Analysis And Content Analyzed
a) Articles at the
international level:
The table below represents classification and comparative study between different articles at the international level.
Table 1: Articles at the international level
|
Species studied |
study area |
country |
heavy metal results |
Reference |
|
Auxis thazard Brama japonica Coryphaena hippurus Kyphosus cinerascens Kyphosus lembus Scombermorus commersoni Thunnus albacora |
Zhongsha (Macclesfield) |
China |
Cd Pb Cr Cu Zn(ng/g) 9.42±0.29 7.64±0.24 0.79±0.011 0.29±0.006 2.63±0.03 3.70±0.10 10.44±0.23 0.96±0.014 0.45± 0.005 4.59±0.05 0.52±0.02 9.69±0.33 1.03±0.014 0.38±0.005 3.73±0.05 3.56±0.10 23.21±0.72 1.08±0.018 1.13±0.017 6.88±0.08 1.57±0.04 16.43±0.46 0.93±0.021 0.68±0.012 5.23±0.12 1.57±0.05 5.91±0.11 0.82±0.015 0.37±0.007 4.24±0.09 0.67±0.03 13.39±0.29 1.26±0.025 0.21±0.003 5.11±0.07 |
30 |
|
Micropogoniasfurnieri : muscles liver Mugilliza: muscles liver |
La Plata River Estuary |
Argentina |
Cd Zn Hg(ug/g)
ND. 20.5 0.11 3.13 44.3 0.13
0.34 48.8 0.40 9.15 52.0 0.53 |
32 |
|
L. ramada |
The Guadalquivir river |
Spain |
Cd Cu Fe Pb Zn 0.003 0.1-1.0 5.6-15.1 0.03-0.06 4.4-21.5 |
33 |
|
Solea senegalensis |
Huel estuary |
Spain |
Zn Cd Pb Cu As(mg/Kg) 86.6±2.4 19.47±0.6 0.3197±0.05 31.27±1 10.27±0.5 |
34 |
|
Sillago Sihama Liza Parsia Etroplus Suratensis Oreochromis Mossambicus Arius Parkii Gerres Oyena |
The Ennore stream |
India |
Fe Cr Cu Pb Zn Cd(ug/g) 6.69 1.09 6.99 0.97 3.81 0.06 11.318 1.944 7.052 1.116 3.86 0.084 4.351 1.499 6.915 1.45 3.289 0.104 5.268 1.716 6.843 1.542 3.148 0.143 7.818 2.037 8.051 1.516 11.353 0.114 3.706 1.746 8.113 1.387 4.021 0.126 |
35 |
|
Sea bream: Gills Liver Muscular Sole: Gills Liver Muscular |
Ria of Huelva |
spain |
Zn Cd Pb Cu As (mg kg−1) 97.52 0.10 3.68 9.96 11.17 230.45 4.24 1.58 394.26 7.13 44.86 0.01 0.32 1.87 13.58 73.70 0.56 4.52 11.90 13.82 88.20 1.82 1.46 433.45 14.56 23.68 0.01 0.40 1.41 10.61 |
36 |
|
Flounder: Liver Muscular Plaice: Liver Muscular |
French coasts between the eastern Channel and the southern bay of the North Sea |
France |
Cd Cu Mn Pb(ug/g) 0.26±0.13 52.2±25.1 4.0±2.7 0.09±0.01 0.003±0.001 0.78±0.040.52±0.03 0.02±0.02 0.12±0.09 11.1±10.8 11.0±10.5 0.09±0.07 0.007±0.020 1.2±1.0 0.54±0.24 0.07±0.07 |
37 |
|
Platichthys flesus |
severn estuary |
England |
Zn
Cd Cu (ppm) |
38 |
|
Anodontostoma chacunda Bélangerii Cynoglossures arel |
Musa estuary (Gabrenakhoda) |
Iran |
Pb Cd Hg As (μg/kg) 0.018 0.001 0.065 0.515 0.027 0.005 0.684 0.483 0.012 0.001 0.299 3.348 |
39 |
|
Fundulus |
New England |
USA |
As Cd Hg Pb(µg g´1) 23.3 114.8 44.2 85.8 |
40 |
|
Catla catla Oreochromis nilotica Labeo rohita |
tropical wetlands |
India |
As Cu Hg Zn((µg g-1) 0.82-1.22 2.10-5.20 0.14-0.51 22.88-41.00 BDL-1.02 4.95-8.91 0.14-0.70 34.03-71.98 BDL-0.73 3.97-7.51 0.15-0.72 31.71-92.70 |
41 |
|
salmonidé |
|
USA |
Cd Cr Cu Fe Pb((µg g-1) 0.391.50 10.54353.9 0.78 |
42 |
|
Tor macrolepis Glyptothorax stocki Cyprinus carpio Cirrhinus mrigala Schizothorax plagiostomus |
the swat river |
Pakistan |
Pb Cd As Cr Cu(mg kg−1) 0.0282 0.019 0.0091 0.011 0.0035 0.00410.0076 0.0025 0.0031 0.005 0.083 0.097 0.018 0.020 0.0083 0.0150.008 0.0043 0.017 0.0052 0.0340.051 0.0098 0.072 0.0094 |
43 |
|
M.cephalus: Gills Liver Muscular |
the Ennore estuary |
Portugal |
Cd Cu Pb Zn (µg g-1) 2,856 ± 0,25 5,598±0,74 5,253±0,59 8,058±0,96 3,146±0,398 6,068±0,94 4,334±0,4957,467±0,895 0,953±0,12 3,346±0,56 1,15±0,23 4,132±0,46 |
44 |
|
Micropogonias furnieri |
Guanabara Bay Sepetiba Bay Ilha Grande Bay Conceicao Lagoon |
Brazil |
Hg(ngg-1) 103.0±58.6 77.3±68.0 89.2±93.1 130.2±69.1 |
45 |
|
P.flesus S. solea |
Scheldt estuary |
Belgium |
As Cd Cr Cu Zn(μg/g) 8.83/1.57 -/233 285/190 1996/587 2270/801 10.2/5.37 730/70.5 320/193 2651/1075 3970/2660 |
46 |
|
Gobiidae Percichthyidae |
The Tsurumi River Estuary |
Japan |
Cr Cu Mn Zn(ppm) 0.48±0.07 2.97±1.81 0.95±0.16 14.55±0.69 0.71±0.06 1.36±0.11 0.51±0.072 0.44±1.92 |
47 |
|
H.nehereus O. lacepedii |
la côte médiane du Zhejiang |
China |
As Cd Cu Pb Zn (μg/g) 0.325 0.007 0.101 0.009 2.628 1.110 0.006 0.234 0.014 3.947 |
48 |
|
Paraneetroplus synspilus Theraps heterospilus Paraneetroplus bifasciatus astyanax aeneus Rocio octofasciata Batrachoides goldmani |
a tropical estuarine lagoon |
Mexico |
Cd Cr Pb Zn(mg/kg) 0.14±0.34 0.46±0.71 24.29±4.20 0.46±0.79 18.69±3.11 0.33±0.74 0.65±1.46 28.06±7.35 0.41±0.82 0.81±1.63 28.59±8.38 0.18±0.45 0.33±0.80 34.66±20.65 0.55±0.78 0.98±0.38 60.19±11.12 12±0.27 0.24±0.47 0.15± 0.66 |
49 |
Analysis of The Results Obtained:
a) Distribution of articles by country:
Although researchers around the world have focused on the topic of heavy metal accumulation in fish and the impact of fish consumption on human health(figure 4), we can clearly distinguish that this topic is of interest to developed countries as well as developing countries.
Figure 4: represents the most published pay of articles
b) Authors who have published more in this topic:
According to the studies that have been done, the authors that have published the large number of articles in the world are(figure 5), the German author B. Sures, followed by the Indian S. Mahboob and F. Yilmaz his results compatible with the classification countries with the highest scientific output.
Figure 5: representation of the most cited authors in the articles
c) The contribution of the authors:
To visualize the relationships between the authors of the 1205 articles in Scopus, a network of co-citation of cited authors is presented in (Figure 6), the minimum citation is set at 20.
Figure 6: The co-citation network of cited authors
d) Analysis of the number of publications:
The analysis of the metadata of each article, allowed us to collect the years of publication of the articles and to produce a flowchart below (figure 7), which shows that the number of publications since 1984 follows an increasing function. From 1984 to 2021, the number of publications in our research theme does not exceed 4 articles per year, this number begins to increase annually until it reaches 118 articles in 2020 and 132 articles in 2021.
Figure 7: Represents the number of articles published by year
CONCLUSION:
In this study, we dealt with the chemical contamination of estuaries by heavy metals, after an analysis of journals, articles and theses within the framework of the global research of trends that threaten living beings, its research results were obtained throughout the period from 1981 to 2021.
English was the dominant language of estuarine pollution research. Along with the development, estuarine pollution research grew steadily and began to increase significantly in the 1980s. This could predict that the number of scientific publications related to estuarine pollution research would further increase quickly in the future.It has been noticed that several articles published in the field of Eco-toxicology have chosen the journal (Research journal of pharmacy and technology) in their research work, especially in the Scopus database.
The first authors and most collaborative articles correspond to researchers from the United States. Meanwhile, China has shown a rapid growth rate and finally ranked 2nd in 2010. In addition, heavy metals in fish are favored as a bio-indicator of pollution degree, especially for fish.
REFERENCES:
1. Arun Chauhan, Sarabjeet Kaur, et Rahul Singh, « A Review on Probiotics and Fish Farming », Res. J. Pharm. Technol., vol. 11, no 11, p. 5143‑5146, 2019, doi: 10.5958/0974-360X.2018.00939.3.
2. Moumita Sinha, Manju Sahu, Sandip S. Sallawad, Bharti Ahirwar, et Arjun Rao Isukapatla, « Characteristics and Identifying Features of Various Natural Toxins and Poisonous Plants used as Weapons in Forensic Cases », Res. J. Pharm. Technol., vol. 10, no 12, p. 4237‑4241, 2017, doi: 10.5958/0974-360X.2017.00776.4.
3. C. C. Kurgat, J. K. Kibet, P. K. Cheplogoi, S. C. Limo, et P. M. Kimani, « Determination of major tobacco alkaloids in mainstream cigarette smoking », Asian J Res. Chem, vol. 9, no 5, p. 205, 2016, doi: 10.5958/0974-4150.2016.00035.3.
4. S. Thara, M.G. Sanal Kumar, et B. Bini, « Study on the Length-weight Relationship of Four Common Edible Marine Fish Species from Shanghumugham and Valiyathura Beaches – Kerala, India », Res. J. Pharm. Technol., vol. 10, no 2, p. 367-370., 2016, doi: 10.5958/0974-360X.2017.00074.9.
5. Subhashini. V, Suresh Bhojraj, Keshav Prakash. S, et Shalilni. T, « A Complexity Focus on Nanotoxicology- A Review », Res. J Pharm Tech, vol. 10, no 1, p. 346-350., 2016, doi: 10.5958/0974-360X.2017.00070.1.
6. M. Dural, M. Z. L. Göksu, et A. A. Özak, « Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon », Food Chem., vol. 102, no 1, p. 415‑421, janv. 2007, doi: 10.1016/j.foodchem.2006.03.001.
7. Muralidharan V et M. Deecaraman, « A Review on the source of decline of Three Freshwater Species with various Biological Features », Res. J. Pharm. Technol., vol. 10, p. 3552-3555., 2017, doi: 10.5958/0974-360X.2017.00643.6.
8. R. S. M., B. V. Shree, R. K. K., et G. Nishikant, « Examining the heavy metal contents of an estuarine ecosystem: case study from Maharashtra, India », J. Coast. Conserv., vol. 23, no 6, p. 977‑984, déc. 2019, doi: 10.1007/s11852-019-00702-1.
9. Sandip Shankar Sallawad, Ankita Sharma, Diksha Pandey, et Bharati Ahirwar, « Entomotoxicology- A Juvenile Branch of Forensic Entomological Studies », Res. J. Pharm. Technol., vol. 11, no 1, p. 65-72., 2017, doi: 10.5958/0974-360X.2018.00013.6.
10. G. Manikandan, P. Rajendiran, V. Harish, et Nooka Sai Kumar, « A Tree Structure Based Key Generation Technique for Data Security Enhancement », Res. J. Pharm. Technol., no 2895-2898., 2017, doi: 10.5958/0974-360X.2017.00511.X.
11. M Jyothi, et V. Suneetha, « Identification of Bioluminescence producing bacteria from shiny Fish scales from Vellore Fish-Market (Dum », Res. J. Pharm. Technol., p. 2501-2506., 2017, doi: 10.5958/0974-360X.2017.00442.5.
12. Ahmad Shoaib, « Recent advances in Pharmacology and Toxicology of Phytopharmaceuticals », Asian J. Pharm. Res., vol. Volume : 7, Issue : 4, p. 222-224., juin 2018, doi: 10.5958/2231-5691.2017.00034.X.
13. S. Sreekala et H. M. Helen, « Studies on the Heavy Metal Content of Coastal Waters Adjacent to Kadiyapattanam Estuary, South West Coast of India », Asian J. Res. Chem., vol. 9, no 10, p. 479, 2016, doi: 10.5958/0974-4150.2016.00072.9.
14. P.C. Divya et H. Mary Helen, « Studies on the impact of tourism and related resorts on the water characteristics of Poovar estuary, Kerala », Asian J. Res. Chem., p. 601-607., 2016, doi: 10.5958/0974-4150.2016.00081.X.
15. R. Sumitha, V. Deepa Parvathi, et N Banu, « Cytotoxicity Testing of Star Fish Stellaster equestris Extracts on Pa1 Celline », Res. J. Pharm. Technol., p. 2851-2856., doi: 10.5958/0974-360X.2017.00502.9.
16. Rajesh. A. Samant et Vijay. L. Gurav, « A Biosorption of Heavy Metal Ions from effluent using Waste Fish Scale », Asian J. Res. Chem., vol. 11, no 5, p. 775, 2018, doi: 10.5958/0974-4150.2018.00136.0.
17. Samir Derouiche, Taissir Cheradid, et Messaouda Guessoum, « Heavy metals, Oxidative stress and Inflammation in Pathophysiology of Chronic Kidney disease - A Review », Asian J. Pharm. Technol., vol. 10(3), p. 202‑206, 2020, doi: 10.5958/2231-5713.2020.00033.1.
18. Merina Paul Das, Vijaylakshmi J. V., Suguna P. R, Renuka M., et Karpuram Prasad, « Efficient Dye Decolorization of an Azo dye on Fish Scale Hydroxyapatite », Res. J. Pharm. Technol., vol. 12, no 6, p. 2917‑2921, 2019, doi: 10.5958/0974-360X.2019.00491.8.
19. M. H. Mohamed Noor, S. Wong, N. Ngadi, I. Mohammed Inuwa, et L. A. Opotu, « Assessing the effectiveness of magnetic nanoparticles coagulation/flocculation in water treatment: a systematic literature review », Int. J. Environ. Sci. Technol., p. 1‑22, mai 2021, doi: 10.1007/s13762-021-03369-0.
20. A. S. S. Ahmed, M. Rahman, S. Sultana, S. M. O. F. Babu, et Md. S. I. Sarker, « Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications », Mar. Pollut. Bull., vol. 145, p. 436‑447, août 2019, doi: 10.1016/j.marpolbul.2019.06.035.
21. Nivedita A. Lall, « Fisheries of Mahanadi Basin of Chhattisgarh », Int. J. Rev. Res. Soc. Sci., vol. 8, 2020, doi: 10.5958/2454-2687.2020.00004.0.
22. N. Nasyitah Sobihah, A. Ahmad Zaharin, M. Khairul Nizam, L. Ley Juen, et K. Kyoung-Woong, « Bioaccumulation of heavy metals in maricultured fish, Lates calcarifer (Barramudi), Lutjanus campechanus (red snapper) and Lutjanus griseus (grey snapper) », Chemosphere, vol. 197, p. 318‑324, avr. 2018, doi: 10.1016/j.chemosphere.2017.12.187.
23. Okechukwu Francis Mbonu, Anastecia Preciouse Udeozor, et Okwuosa Ben Obinna, « Determination of Some Heavy Metal Pollutants In Conydors semiaquilus and Oreochromis niloticus Samples from Ndibe Beach at Afikpo North Local Government Area, Afikpo of Ebonyi State Nigeria », Res. J. Sci. Technol., vol. 9, no 2, p. 224-228., 2017, doi: 10.5958/2349-2988.2017.00039.0.
24. Christynal Oliviya R., « Production of ecofriendly silver nanoparticle and evaluation of its potential antimicrobial activity », Res. J. Pharm. Technol., vol. 8, p. 1374‑1378, 2015, doi: 10.5958/0974-360X.2015.00246.2.
25. Namasivayam S, Karthick Raja, et Poornima V, « An Investigation of Polymer Coated Metallic Nanoparticles Mediated Influence on Gut Microbiota of Zebra Fish (Danio rerio) », Res. J. Pharm. Technol., vol. 10, p. 2221‑2225, 2017, doi: 10.5958/0974-360X.2017.00392.4.
26. M. Arnac et C. Lassus, « Accumulation de quelques metaux lourds (Cd, Cu, Pb et Zn) chez l’eperlan (Osmerus mordax) preleve sur la rive Nord de l’Estuaire du Saint-Laurent », Water Res., vol. 19, no 6, p. 725‑734, janv. 1985, doi: 10.1016/0043-1354(85)90119-8.
27. S. Rajeshkumar, Y. Liu, X. Zhang, B. Ravikumar, G. Bai, et X. Li, « Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China », Chemosphere, vol. 191, p. 626‑638, janv. 2018, doi: 10.1016/j.chemosphere.2017.10.078.
28. Neethu Kamarudheen, Christy Sara George, Sukriti Pathak, Sruthi Laura George, et K V Bhaskara Rao, « Antagonistic activity of Marine Streptomyces sp. on Fish pathogenic Vibrio species isolated from Aquatic E », Res. J. Pharm. Technol., vol. 8, p. 1529‑1533, 2015, doi: 10.5958/0974-360X.2015.00273.5.
29. I. Caçador et al., « Macroinvertebrates and fishes as biomonitors of heavy metal concentration in the Seixal Bay (Tagus estuary): Which species perform better? », Ecol. Indic., vol. 19, p. 184‑190, août 2012, doi: 10.1016/j.ecolind.2011.09.007.
30. Y.-G. Gu, Q. Lin, X.-H. Wang, F.-Y. Du, Z.-L. Yu, et H.-H. Huang, « Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks », Mar. Pollut. Bull., vol. 96, no 1‑2, p. 508‑512, juill. 2015, doi: 10.1016/j.marpolbul.2015.04.022.
31. C. K. Kwok, Y. Liang, H. Wang, Y. H. Dong, S. Y. Leung, et M. H. Wong, « Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China », Ecotoxicol. Environ. Saf., vol. 106, p. 62‑67, août 2014, doi: 10.1016/j.ecoenv.2014.04.016.
32. J. Marcovecchio, « The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in La Plata river estuary, Argentina », Sci. Total Environ., vol. 323, no 1‑3, p. 219‑226, mai 2004, doi: 10.1016/j.scitotenv.2003.09.029.
33. J. Blasco, A. M. Arias, et V. Sáenz, « Heavy metals in organisms of the River Guadalquivir estuary: possible incidence of the Aznalcóllar disaster », Sci. Total Environ., vol. 242, no 1‑3, p. 249‑259, déc. 1999, doi: 10.1016/S0048-9697(99)00394-0.
34. M. Oliva, J. José Vicente, C. Gravato, L. Guilhermino, et M. Dolores Galindo-Riaño, « Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): Seasonal and spatial variation », Ecotoxicol. Environ. Saf., vol. 75, p. 151‑162, janv. 2012, doi: 10.1016/j.ecoenv.2011.08.017.
35. M. Jayaprakash, R. S. Kumar, L. Giridharan, S. B. Sujitha, S. K. Sarkar, et M. P. Jonathan, « Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect », Ecotoxicol. Environ. Saf., vol. 120, p. 243‑255, oct. 2015, doi: 10.1016/j.ecoenv.2015.05.042.
36. J. J. Vicente-Martorell, M. D. Galindo-Riaño, M. García-Vargas, et M. D. Granado-Castro, « Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary », J. Hazard. Mater., vol. 162, no 2‑3, p. 823‑836, mars 2009, doi: 10.1016/j.jhazmat.2008.05.106.
37. F. Henry, R. Amara, L. Courcot, D. Lacouture, et M.-L. Bertho, « Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea », Environ. Int., vol. 30, no 5, p. 675‑683, juill. 2004, doi: 10.1016/j.envint.2003.12.007.
38. G. W. Bryan, « Recent trends in research on heavy-metal contamination in the sea », Helgoländer Meeresunters., vol. 33, no 1‑4, p. 6‑25, mars 1980, doi: 10.1007/BF02414731.
39. B. Keshavarzi et al., « Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf », Mar. Pollut. Bull., vol. 129, no 1, p. 245‑252, avr. 2018, doi: 10.1016/j.marpolbul.2018.02.032.
40. C. Y.Chen, D. M.Ward, J. J.Williams, et N. S.Fisher, « Metal Bioaccumulation by Estuarine Food Webs in New England, USA », J. Mar. Sci. Eng., vol. 4, no 2, p. 41, juin 2016, doi: 10.3390/jmse4020041.
41. K. Bhupander, « Assessment of Human Health Risk for Arsenic, Copper, Nickel, Mercury and Zinc in Fish Collected from Tropical Wetlands in India », vol. 2, p. 14, 2011.
42. A. G. Maule, A. L. Gannam, et J. W. Davis, « Chemical contaminants in fish feeds used in federal salmonid hatcheries in the USA », Chemosphere, vol. 67, no 7, p. 1308‑1315, avr. 2007, doi: 10.1016/j.chemosphere.2006.11.029.
43. M. Liu et al., « Contamination features, geo-accumulation, enrichments and human health risks of toxic heavy metal(loids) from fish consumption collected along Swat river, Pakistan », Environ. Technol. Innov., vol. 17, p. 100554, févr. 2020, doi: 10.1016/j.eti.2019.100554.
44. L. Arockia Vasanthi, P. Revathi, J. Mini, et N. Munuswamy, « Integrated use of histological and ultrastructural biomarkers in Mugil cephalus for assessing heavy metal pollution in Ennore estuary, Chennai », Chemosphere, vol. 91, no 8, p. 1156‑1164, mai 2013, doi: 10.1016/j.chemosphere.2013.01.021.
45. H. A. Kehrig, O. Malm, et I. Moreira, « Mercury in a widely consumed fish Micropogonias furnieri Ž Demarest, 1823. from four main Brazilian estuaries », vol. 213, p. 9, 1998, doi: https://doi.org/10.1016/S0048-9697(98)00099-0.
46. E. Van Ael, R. Blust, et L. Bervoets, « Metals in the Scheldt estuary: From environmental concentrations to bioaccumulation », Environ. Pollut., vol. 228, p. 82‑91, sept. 2017, doi: 10.1016/j.envpol.2017.05.028.
47. S. Yoshida, Y. Date, M. Akama, et J. Kikuchi, « Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan », Sci. Rep., vol. 4, no 1, p. 7005, mai 2015, doi: 10.1038/srep07005.
48. Y. Liu, G. Liu, Z. Yuan, H. Liu, et P. K. S. Lam, « Heavy metals (As, Hg and V) and stable isotope ratios (δ13C and δ15N) in fish from Yellow River Estuary, China », Sci. Total Environ., vol. 613‑614, p. 462‑471, févr. 2018, doi: 10.1016/j.scitotenv.2017.09.088.
49. M. Mendoza-Carranza, A. Sepúlveda-Lozada, C. Dias-Ferreira, et V. Geissen, « Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico », Environ. Pollut., vol. 210, p. 155‑165, mars 2016, doi: 10.1016/j.envpol.2015.12.014.
Received on 23.03.2022 Modified on 18.07.2022
Accepted on 04.10.2022 © RJPT All right reserved
Research J. Pharm. and Tech 2023; 16(1):209-214.
DOI: 10.52711/0974-360X.2023.00039