Analytical Methods for Determination of Lamivudine and their Applicability in Biological Studies
Nalini C. N.*, Nithya. A, Afnaan Afreen, A. Ashraf Banu, Hemalatha. P, E. J. Gayathri
C. L. Baid Metha College of Pharmacy, Chennai-97
*Corresponding Author E-mail: nalini_cn@yahoo.co.in
ABSTRACT:
The drug development plays an important role in maintaining thehuman health.To confirm that the developed pharmaceuticals have the prescribed standards various chemical and instrumental methods were developed. These methods are also useful in reducing the impurities present in the drug moieties developed. Antiretroviral therapy(ART) is the combination of several antiretroviral medicines used to retard the growth rate of HIV in the body. Lamivudine is one of those antiretroviral drugs, that comes under the class of nucleoside reverse transcriptase inhibitors (NRTIs), used primarily in the treatment of AIDS and hepatitis B infection. This review highlights a variety of analytical techniques such as chromatographic, spectroscopic and other techniques; HPLC and HPTLC are most commonly preferred for their high sensitivity and accuracy. By reviewing these latest methods it will become easier for future researchers to make an informed choice. The article focuses on the recently developed and validated methods, both in vivo and in-vitro that are currently used for Lamivudine individually or in combination with other drugs.
KEYWORDS: Lamivudine, Techniques, Validation, Estimation, HPLC, HPTLC.
INTRODUCTION:
Antiretroviral therapy(ART) is the combination of several antiretroviral medicines used to retard the growth rate of HIV in the body. This kind of treatment is more effective than monotherapy against the retrovirus (HIV). They provide, palliative treatment by prolonging and improving the quality of life and postponing complications of AIDS or AIDS related complex (ARC), without treating the actual disease. The clinical efficacy of anti retrovirus drugs is monitored primarily by plasma HIV-RNA assays and CD4 lymphocyte count carried out at regular intervals. And several methods that are used in the analysis of lamivudine is summarised.
Anti retroviral drug that are used to treat HIV include:
Nucleoside/Nucleotide reverse transcriptase inhibitors
They are also called as nucleoside analogs . Drugs may include, zidovudine, lamivudine, abacavir emtricitabine and tenofovir.
Nonnucleoside reverse transcriptase inhibitors (NNRTIs):
Drugs such as efavirenz, etravirine and nevirapine comes under this class.
Protease inhibitors (PIs):
PIs such as atazanavir, darunavir and ritonavir.
Entry inhibitors:
Drugs such as enfuviritide and maraviroc.
Integrase inhibitors:
Such as dolutegravir and raltegravir.
Lamivudine, which comes under nucleoside/nucleotide reverse transcriptase inhibitor commonly called as 3TC, an antiretroviral medication used to prevent and treat HIV/AIDS which acts by scientifically inhibits the viral reverse transcriptase. It is also used to treat hepatitis B. It is effective against both HIV-1 and HIV-2. It is generally used in combination with other antiretroviral such as zidovudine and abacavir. Lamivudine is taken by oral route as tablet or as oral solution.
General methods used in the analysis of lamivudine:
· RP-HPLC.
· UV Spectroscopy and Q-Analysis.
· HPTLC.
· UPLC.
· CWT And DS.
· MLC.
UV-Spectroscopy.
S. No |
DRUG |
METHOD |
INSTRUMENTAL PARAMETERS |
RESULTS OF VALIDATION |
REF |
1 |
Zidovudine, Lamivudine |
UV |
Jasco V650 double beam UV Visible spectrophotometer, 0.1N HCl, L:256nm &275.2nm Z:272nm & 287.2nm
|
Linearity : L: 50-275 µg/ml, Z:50-425 µg/ml Cor.Coeff: L:0.998, Z:0.999 LOD: L: 15.74 µg/ml, Z: 5.79 µg/ml LOQ: L: 47.69 µg/ml, Z: 17.56 µg/ml |
1 |
2 |
Lamivudine, Efavirenz |
UV |
UV double beam spectrophotometer (Shimadzu model 1800), Acetonitrile L:271nm E:247nm
|
Linearity: L:10-100 µg/ml, E:10-70 µg/ml Cor.Coeff: L:0.996, E:0.999 L.O.D: L: 3 µg/ml, E: 3.5 µg/ml L.O.Q: L&E : 10 µg/ml. |
2 |
3 |
Lamivudine, Tenofovir |
Q-Analysis and UV |
UV :(λmax) L: 271nm T: 260nm Q-Analysis: (Isobastic point) L:269nm T:260nm |
Linearity: L:5-60µg/ml,T: 5-60µg/ml Corelation coefficient: L: 0.999, T:0.999 Regression equation: L: y= 0.0175+0.0038 T: y= 0.0239+0.0057 LOD:(µg/ml) L:0.239, T:0.472 LOQ:(µg/ml) L:0.791, T:1.56 Percent recovery: L:99.86, T:99.83 |
3 |
4 |
Lamivudine and zidovudine |
UV AND Q-Analysis |
UV:(λmax) L:273.2nm Z:267.3nm Q-Analysis: (Isobastic point) L:270.1nm Z:270.1nm |
Linearity: L:4-12ppm, Z:4-12ppm Corelation coefficient: L:0.9997, Z:0.9994 Q-Analysis: L:0.9984, Z:0.9994 Regression equation:(λmax) L: y=0.0395x+0.0065 Z: y=0.0.0364x-0.0089 Iso absorptive point: L:y=0.04x-0.0022 Z:y=0.0354x-0.0078 Regression coefficient:(λmax) L:0.9994 , Z:0.999 Isoabsorptive point: L:0.998, Z:0.9989 |
4 |
5. |
Lamivudine |
UV |
UV: λmax= 268nm
|
Linearity: 6-14µg/ml Recovery: 98.7, 101, 99.2% for three levels respectively. %RSD Precision: 0.62% |
5 |
RP-HPLC method
S.NO |
DRUGS |
INSTRUMENTAL PARAMETERS |
RESULTS OF VALIDATION |
REFERENCE |
6. |
Lamivudine, zidovudine, nevirapine. |
Column:Qualisil BDS C8 column(250mmX4.6mm i.d., 5µm particle size) Mobile phase:water and acetonitrile in the ratio of 70:30 v/v with pH 5 adjusted with acid Flow rate: 1 min/ml RT: L: 3.1 min Z:4.4 min, N:7.0 min Detection : 250nm |
Linearity: L:1-15µg/ml, Z:3-24µg/ml, N:2.5-20µg/ml Corelationcoefficent: L:0.9992, Z:0.9992, N:0.9991 LOD: L:45ng/ml, Z:75ng/ml, N: 500ng/ml LOQ: L:150ng/ml, Z: 224ng/ml, N: 1550ng/ml. Plate count: L:12366 ,Z: 14803, N:16773. |
6 |
7. |
Lamivudine, zidovudine, nevirapine. |
Column: Luna C18 150 X 4.6mm column. Mobile phase: 50mM ammonium acetate buffer(pH 6.8) and methanol. Gradient mode of elution with 0-35%v/v methanol for first ten minutes, increased to 50%v/v till 12 minutes and isocratic to 18 minutes, return to initial at 20 minutes. Flow rate: 1ml/min Detection:265nm |
Linearity: It is linear over the following concentration range for five analytes: Cytosine and thymine (0.5-8µg/ml), 3TC (1-50µg/ml), AZT and NVP (1-80µg/ml). Coefficient of determination: >0.9997 Accuracy: (mean recovery ± S.D) 101.26±1.27% Intraday precision: (%RSD) 0.49±0.28% Interday precision: (%RSD) 2.24±0.26% |
7 |
8.
|
Lamivudine, Tenofovir Disoproxil Fumarate, Efavirenz |
Column:kromasil C18analytical column(150X4.6mm, 5µm) Mobile Phase: 70 volumes of methanol and 30 volumes of 10mM phosphate buffer(pH 5.0) Flow Rate: 1min/ml RT: L:2.76,T:3.96,E:10.5 |
Linearity: L: 1-6µg/ml,T:1-6µg/ml, E:2-12µg/ml Recovery: L:99.46- 101.36% T:99,57-101.42% ,E: 99.96-100.87% |
8 |
9. |
Lamivudine, efavirenz |
Column: Luna 5μ C18 (2) 100A (250 × 4.60 mm i.d) Mobile Phase: 0.1% triethylamine (pH adjusted to 5.11 with 0.1% orthophosphoric acid) and acetonitrile (30:70 % ) Flow Rate: 1min/ml RT: For lamivudine was 2.271±0.177 min and efavirenz was 7.267±0.513 min
|
Linearity: L:40-100µg/ml, E:10-80µg/ml. Corelation Coefficient: L:0.998, E:0.997 LOD:L:0.004µg/ml ,E:0.02µg/ml LOQ:L:0.03µg/ml ,E:0.07µg/ml Repeatability: L: 0.419, E: 0.297 Theoritical plates: L: 5177, E: 11751 Tailing factor: L: 0.896, E:1.132 Recovery (%) 50- L:99.61, E:99.66 100- L:100.05, E:99.70 150- L:99.55, E:99.45 Precision (%RSD) Inter Day(n=3) L:0.548, E:0.489 Intraday(n=3)L:0.301, E: 0.281 |
9
|
10. |
Lamivudine, stavudine |
Column: C18 45µ (250X4.6mm) Mobile Phase: Water : methanol in the ratio 90:10 Flow Rate: 1ml/min RT: S: 5.621 min, L: 4.176min |
Linearity: L:20-100µg/ml, S:20-100µg/ml LOD:S:3.52µg/ml, L:0.825µg/ml LOQ:S:9.61µg/ml, L:2.501µg/ml. %RSD:S:0.43, L:0.26. Recovery: L:99.32-101.36% S:99.32-101.36% |
10 |
11. |
Lamivudine, didanodine, efivirenz. |
Column: Oyster BDS premium C18 (250mm X 4.6mm, 5µm) Mobile Phase: Water:tetrahydrofuran : acetonitrile (45.83: 20.83: 33.34% v/v/v) Flow Rate:1.15ml/min RT: L:2.01±0.003, D: 3.01 ± 0.001, E: 8.61±0.002 |
Linearity: L: 15-90µg/ml, D:12.5-75µg/ml, E: 30-180µg/ml Recovery: L:99.85%, D: 99.78%, E:99.94% LOD: L:0.61µg/ml, D:0.43µg/ml, E: 0.65µg/ml LOQ: L:1.85µg/ml, D:1.31µg/ml, E:1.97µg/ml |
11 |
12 |
Lamivudine, Zidovudine |
Column:Xterra column (150mm X 4.6mm) Mobile Phase:potassium dihydrogen phosphate: acetonitrile (55:45) At pH 3 Flow Rate:0.5ml/min RT:L:3.556,Z: 5.364 |
Recovery(%): L:100.8% ,Z:100.1% CorelationCoeffiecient: L:0.999, Z:0.999 |
12 |
13. |
Lamivudine, TenofovirDisoproxil Fumarate. |
Column: column-enable C18 G 5µM, 250X4.6mm Mobile Phase: methanol and water in the ratio 70:30 v/v pH-3.2 Flow Rate:1 ml/min RT: L: 3.048min, T:5.354 min.
|
Linearity: L:10-50µg/ml ,T: 10-50µg/ml Correlation Coefficient: L: 0.9999, T:0.9999 LOD:L: 1.488341, T:3.552008 LOQ:L:4.510123, T:9.76366 Tailing factor: L: 1.2, T: 1.4 Theoretical plates: L:26478.23, T:5687.56 RSD: L:0.678299, T:424776 |
13 |
14. |
Lamivudine, zidovudine. |
Column: Inert silODS C18(250X4.6 mmI.D) 5µm Mobile Phase: Ammonium acetate buffer pH 4.0, Acetonitrile and THF in the ratio of 60:30:10 Flow Rate:1ml/min RT: L:3.793 min Z:2.547 Detection Wavelength:240nm |
Linearity: L: 30-70µg/ml, Z: 60-140µg/ml LOD: L:1.98µg/mlZ:3.39µg/ml LOQ: L:5.99µg/mlZ:10.27µg/ml Theoretical Plates: L:3250 Z:2320 Tailing Factor: L:1.725, Z:1.742 |
14 |
15. |
Lamivudine, Zidovudine, Efavirenz |
Column: Symmetry C18 (250X4.6 mm, 5µ) Mobile Phase:Methanol : Water(65:35) Flow Rate: 1ml/min RT: L:2.519, Z:3.015, E: 24.103mins
|
Corelation Coefficient: L:0.9997, Z:0.9997, E:0.9997 Tailing factor: L:1.25 ,Z:1.32 ,E:1.12 Theoretical plates: L:6615 ,Z:7512 ,E:4500 RSD(%) L:0.05 ,Z:0.04, E:0.26 R2: L:0.9995 ,Z:0.9994 ,E:0.9993 |
15 |
16. |
Lamivudine, efavirenz, zidovudine. |
Column:C18 (250 x 4.6mm; 5µ) Mobile Phase: Acetonitrile 0.2M, potassium dihydrogen orthophosphate buffer adjusted to pH 3.2 in the ratio of 30:70 v/v Flow Rate: 1min/ml RT: E:2.01 min, L:2.90 min, Z:7.52min,Detection: 275nm |
Linearity: E:75-450µg/ml, L:18.5-112.5µg/ml, Z:37.5-225µgml %RSD: E:0.15%, L:0.24%, Z:0.37% LOD: E:20ng/ml, L:1ng/ml, Z:2ng/ml LOQ: E:50ng/ml, L:2.5ng/ml, Z:5ng/ml |
16 |
17 |
Lamivudine, Tenofovir disproxil fumarate |
Column:Inertsil ODS 3V, 250mmX4.6mm, 5µ) Mobile Phase:phosphate buffer and acetonitrile in the ratio of 55:45 v/vFlow Rate:1.2 ml/min RT:L:2.430, Z:4.550 |
Corelation coefficient: L:0.995 ,T:0.998 Recovery: L:98.48% ,T:98.64% Theoretical Plates: L:4278 ,T: 3675 |
17 |
18. |
Lamivudine, Stavudine, Nevirapine |
Column:Zorbax C8 ( 250mm X 4.6mm, 5µm) Mobile Phase: 0.1% OPA:Acetonitrile (50:50) Flow Rate: 1min/ml. RT:L:2.350,S:4.124, N: 11.234 |
Linearity: L: 37.5- 112.5µg/ml, S: 7.5-22.5µg/ml, N:50-150µg/ml. LOD:L:0.146, S:0.1705, N:1.215 LOQ:L:0.486, S:0.5682, N: 4.049 Theoretical plates: L: 4244, S:5330, N:7544 Tailing Factor: L:1.08, S:1.13, N:1.07 %RSD:L: 0.7, S:0.6, N:0.5 |
18 |
19. |
Lamivudine, Zidovudine. |
Column: C18 column, kromasil column, Hypersil BDS column. Mobile Phase:water : methanol in the ratio of 40:60 v/v Flow Rate: 0.8ml/min |
Plate Count: L:7360.35, Z:7630.20 Tailing: L:1.22, Z:1.29 |
19 |
20. |
Lamivudine, Tenofovir Disproxil Fumarate |
Column: Thermo scientific Hypersil BDS 5µ C18 120A(250X4.60mm) Mobile Phase: Acetonitrile and phosphate buffer (80:20% v/v), pH 3.5 Flow Rate: 1.2ml/min RT: L: 2.33 min, T:2.68min |
Linearity: L: 15-35µg/ml, T:15-35µg/ml Correlation Coefficient: L:0.999, T:0.999 LOD:(µg/ml)L: 0.4632, T:1.46 LOQ: (µg/ml)L:1.544, T:4.29 Theoretical Plates:L: 3369, T:3389 Tailing factor:L:1.220, T:1.230 %RSD:L:0.65 , T:0.715 |
20 |
21. |
Lamivudine, abacavir, dolutegravir.
|
Column:Luna phenyl hexyl(250mm X 4.6mm, 5µm) Mobile Phase: Acetonitrile and 0.1M phosphoric acid buffer 50:50 v/v. Flow Rate: 1min/ml RT: L:3.3min, A:4.5min D:6.3min Detection Wavelength: 258nm |
Linearity: L: 3-45µg/ml, A:6-90µg/ml, D:0.5-7.5µg/ml. Correlation Coefficient: L:0.999, A:0.999, D:0.999. %Recovery: L:100.58, A:100.27, D:100.11 LOD:L:0.036µg/ml, A:0.065µg/ml, D:0.021µg/ml LOQ: L:0.112µg/ml, A:0.198µg/ml, D:0.071µg/ml. Intercept: L:3256, A:3006, D:536. Slope:L:74605, A:49626, D:61114. |
21 |
22. |
Lamivudine, Zidovudine |
Column:Shiseido C18 column (250nmX4.6mm, 5µm particle size) Mobile Phase: phosphate buffer (pH 3) and CAN in the ratio of 70:30, v/v. Flow Rate: 1.0 min/ml RT:Z:3.721 min ,L:2.512 min Detection: 228nm |
Linearity: L: 7.5-22.5µg/ml, Z:15-45µg/ml Correlation Coefficient:0.999 % RSD: less than 2% Recoveries:L:99.06%, Z:99.88% LOD:L:0.1ng/ml, Z:0.1µg/ml LOQ:L:0.1µg/ml, Z:0.1µg/ml
|
22 |
23. |
Abacavir, lamivudine, dolutegravir
|
Column:Inertsil ODS 250X 4.6 mm, 5µm. Mobile Phase: Buffer: Acetonitrile: Methanol in the ratio of 50:20:30%v/v. Flow rate: 1 min/ml Detection wavelength: 225nm RT: L:2.2min,A:2.9min, D:7.4min Column Temperature:300C |
Linearity: L:15-90µg/ml, A:30-180µg/ml, D:2.5-15µg/ml Correlation Coefficient: L:0.9999, A:0.9998, D:0.9992. Recovery: L:100.04%,A:99.73%, D:100.29% LOD: L:0.10µg/ml, A:0.11µg/ml, D:0.06µg/ml LOQ:L:0.32µg/ml, A:0.33µg/ml, D:0.18µg/ml |
23 |
24. |
Lamivudine, efavirenz. |
Column: ODS C18 column(256X4.6mm and 5µm)xterra Mobile Phase:30mm Ammonium acetate (ph=3): acetonitrile: methanol in the ratio of 50:30:20 Flow Rate: 1 min/ml RT:L:2.527 min, E:2.527 min Detection wavelength: 258nm. |
Linearity: L:60-140µg/ml, E:60-140µg/ml Correlation Coefficient: L:0.999, E:0.999
|
24 |
In human plasma
S. No |
DRUGS |
METHOD |
COLUMN, MOBILE PHASE, RT |
RESULTS OF VALIDATION |
REFERNCE |
25. |
Zidovudine, Lamivudine, Nevirapine |
UV, HPLC in human plasma |
Column:Hypersil BDS C18 column Mobile Phase: 0.1 M ammonium acetate buffer in 0.5% acetic acid, v/v and methanol(40:60, Flow Rate:0.85ml/min Run Time: 10 min Wavelength:270nm |
Linearity: Z:50-3000, L:50-2000, N:10-3000ng/ml LOQ: Z: 50, L:50, N:10ng/ml |
25 |
26. |
Zidovudine, Lamivudine, Nevirapine. |
LC-MS/MS in human plasma |
Column: peerless basic C18 Mobile Phase:0.1% formic acid in water: methanol(15:85,v/v) Injection Volume:3µl Run Time:3.0min |
Linearity: Z:5-1500ng/ml, L:5-1500ng/ml N:10-3000ng/ml Precision:1.6-10.1% Accuracy:93.8-110.8% |
26 |
27. |
Tenofovir, Lamivudine, Nevirapine |
LC-MS/ MS in human plasma |
Column: ProntosilC18AQ column Mobile Phase:1mM ammonium acetate in water: acetonitrile (50:50, v/v). pH: 6.5±0.3 |
Linearity: T:2-500 ng/ml, L: 10-4000ng/ml, N:10-4000ng/ml Recovery:61-85% %CV: less than 12.2% LLOQ,LQC,MQC,HQC was within +_8.5% |
27 |
28. |
Lamivudine |
HPLC in human plasma |
Column:chromolithrp—18e column Mobile phase:50mm sodium dihydrogen phosphate-triethylene(996.4, v/v) Flow rate: 1.5ml/min Column temperature: 200C |
Linearity:40-2560 Corelation coefficient:0.999 LOD:10ng/ml LOQ:40ng/ml Recovery:97.7% |
28 |
UPLC in rat plasma.
S. NO |
DRUGS |
METHOD |
COLUMN ,MOBILE PHASE, RT. |
RESULTS OF VALIDATION |
REF |
29. |
Entecavir, Lamivudine |
UPLC-MS/MS |
Column: Hydrophilic interaction chromatography column(HILIC) Solid-phase extraction (SPE) cartridges were used to extract the analytes from rat plasma. A triple quadrupole mass spectrometer equipped with an electrospray ionization(ESI) was applied to detect the drug. |
Linearity: L:50-8000 ng/ml, E:0.5-80 ng/ml. LOQ: L:50 ng/ml,, E:0.5 ng/ml. |
29 |
HPTLC
S. NO. |
DRUGS |
METHOD |
COLUMN, MOBILE PHASE, RT. |
RESULTS OF VALIDATION |
REF |
30. |
Lamivudine, tenofovir disproxil fumarate. |
HPTLC |
HPTLC silica gel 60F254 plates. Mobile Phase: 20ml of toluene and 10ml of methanol. RT: L:0.35 to 0.38, T:0.57 to 0.59mins. |
Coefficient OfVariation: L:3.4% ,T:1.3% CV For Intermediate Precision: L:3.9% , T:3.8%. Analytical range: L: 2.000-3.100µg, T: 2.000-3.100µg. |
30 |
31. |
Lamivudine , Efavirenz |
HPTLC |
HPTLC plates pre-coated with silica gel 60G F254. Mobile Phase: Ethyl acetate: methanol: formic acid in the ratio of 7.0:2.5:0.5 (v/v). |
Linearity: L:50-200ng/spot, E:100-400ng/spot Regression coeffiecient: L:>0.999, E:>0.999 %Rsd values: Interday and intra day: not more than 2.0 |
31 |
Micellar liquid chromatography (MLC)
S. No |
DRUG |
METHOD |
COLUMN, MOBILE PHASE, RT |
RESULTS OF VALIDATION |
REF |
32. |
Lamivudine |
Micellar liquid chromatography (MLC) |
Column: C18 thermostated column at 300C. Mobile Phase: 0.15Msodium dodecyl sulphate(SDS)- 4%(v/v) 1-butanol- 0.01M KH2PO4-Na2HPO4 pH 7 with zidovudine as internal standard. Flow Rate: 1.0 ml/min Wavelength:272nm. |
Linearity:r2>0.9996 LOD:1.6X10-7-6.9X10-7 M LOQ:1X10-5M Intra-Day Precision: 0.02-1.48% Inter-Day Precision: 0.04-1.66% Recoveries:92.9-199% |
32 |
CWT And Derivative Transform Techniques.
S. NO |
DRUG |
METHOD |
COLUMN, MOBILE PHASE, RT |
RESULTS OF VALIDATION |
REF |
33. |
Lamivudine, Zidovudine. |
Continuous wavelet transform and derivative transform techniques. |
Instrument:TheDaubechies (db5) wavelet family (242nm) and Dmey wavelet family (236nm) were found to give the best results under optimum conditions for simultaneous analysis of lamivudine and zidovudine respectively. Wavelength:L:266nm,Z: 248nm. |
Recoveries: CWT: L:100.31%, Z:100.2%.
DS: L:99.42%, Z:97.37% |
33 |
CONCLUSION:
This review is aimed at focussing the role of different analytical techniques used for the determination of lamivudine including its determination in biological fluids. Though HPLC and HPTLC are the most preferred methods, UV methods are inexpensive and can be applied in routine analysis
REFERENCES:
1. D.Ramakanth Reddy, D.H.H.Theja, M.Ruthu, BJNN Sai and Y.Padmanabha Reddy. Validated Spectrophotometric Method for Simultaneous estimation of Zidovudine and Lamivudine in Combined Pharmaceutical dosage form. International Journal of PharmTech Research, 4(1), 2012,311-314.
2. Manikanta kumara A,B. Naga Sandhya, Mahesh Nasare, V.V.L.N. Prasad, Prakash.V.Diwan. Development and validation of UV Spectrophotometric method for simultaneous estimation of Lamivudine and Efavirenz in the Pharmaceutical dosage form. Journal of Advanced Pharmacy Education & Research, 2(4). 2012, 210-214.
3. Mohammed Imran Anees and MirzaShahedBaig. Determination of lamivudine and tenofovir in pharmaceutical dosage form by simultaneous and Q-Analysis UV- spectrophotometric method. World Journal of Pharmacy and Pharmaceutical Sciences. 4(3), 2015,688-698.
4. Chauhan A, Arora P.K, Nagpal R, Duggal D, Kukrety A, Saini P.K., Mathur S.C., Singh R.M and Singh G.N and Singh G.N. New sensitive uv spectrophotometric methods for simultaneous estimation of zidovudine and lamivudine in fixed dosage combination. Indian Drugs, 52(03), 2015, 28-33.
5. Kalpesh V. Sonar, Prabodhsapkale, Anil Jadhav, Tushardeshmukh, SwapnilPatil, Pallavimurkute. Development and validation of UV spectroscopic method for estimation of lamivudine in tablet dosage form. International Journal of Current Pharmaceutical Research, 2017.,9(6),86-89.
6. P.V.Vamshi Krishna, K. Vinod Kumar, P. Ramalingam, N.Ramesh, C.Harishkumarraju, B. Sreeram. Simultaneous determination of lamivudine, zidovudine and nevirapine in tablet dosage form by RP-HPLC. Am. J. PharmTech Res.2 (4), 2012,894-901..
7. Anjali joshi and Moji Christiana hadeyeye. Reversed phase LC-UV method development and validation for simultaneous determination of three antiretrovirals : Lamivudine, Zidovudine, Nevirapine and possible degradants in a fixed dose pharmaceutical product. Journal of Pharmaceutical Technology and Drug Research, 2012,1-4.
8. Dhara.S. Bhavsar, Bhavini.N.Patel and Chhaganbhai.N.Patel. RP-HPLC method for simultaneous estimation of tenofovirdisoproxilfumarate, lamivudine and efavirenz in combined tablet dosage form.Pharmaceutical Methods.,3(2), 2012,73-78.
9. Manikanta Kumar A, B. Naga Sandhya, Mahesh Nasare, V.V.L.N.Prasad, Prakash.V.Diwan. Developement and validation of RP-HPLC method for simultaneous estimation of lamivudine and efavirenz in the pharmaceutical dosage form. Journal of Advanced Pharmacy Education and Research,2(4), 2012,232-238.
10. C.Jothimanivannan, S. Anandathangadurai, M.Ramya Krishna, C.H.Arjun, V.M.K. Gowtham.Simultaneous determination of stavudine and lamivudine in pharmaceutical dosage forms by RP-HPLC. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 2013,26-29.
11. B.nagasandhya, A. Manikantakumar, Mahesh K Nasare, P. Vijay kumar, Jetta Satish and Prakash v diwan. RP-HPLC method for simultaneous estimation of lamivudine, didanosine and efavirenzin pharmaceutical dosage form. Der Pharmacia Letter, 5(3), 2013,148-155
12. Shaikkarishma, Shankar subramaniam, Meenakshisundaram, Muthuraman and Aravindsivasubramaniyan. RP-HPLC analytical method development and validation for lamivudine and zidovudine in pharmaceutical dosage forms.International Journal of Pharm Tech Research,5(3), 2013,1321-1331.
13. Anjaneyulu.N, Nagakishore.R, Nagaganesh.M, Muralikrishna.K, Nithya.A, Sailathadevi.B, SaikaranGoud.M and Sridevi.N. Development and validation of RP-HPLC method for simultaneous estimation of lamivudine and tenofovirdisproxilfumarate in combined dosage form.Asian Journal of Biomedical and Pharmaceutical Sciences. 3(23), 2013, 7-11.
14. M.Sravani, K.Harithapavani. Analytical method development and validation for simultaneous estimation of lamivudine and zidovudine in tablet dosage form by RP-HPLC. International Journal of Pharmacy and Analytical Research,2(3), 2013,114-120.
15. Sindhura D, Nanda Kishore agarwal. Analytical method development and validation for the simultaneous estimation of lamivudine, zidovudine and efavirenz by RP-HPLC in bulk and pharmaceutical dosage forms. Indian Journal of Research in Pharmacy and Biotechnology.1 (5), 2013,583-588.
16. B.Rajkumar, T.Bhavya, S.Kulsum, A. Ashok kumar.RP-HPLC Method development and validation for the simultaneous quantitative estimation of efavirenz, lamivudine and zidovudine in tablets. International Journal of Pharmacy and Pharmaceutical Sciences,6(2), 2014,87-92.
17. B.Honey Diana, ShaikKhaderBibi and K. Sita kumara. New validated RP-HPLC method for simultaneous estimation of lamivudine and tenofovirdisproxilfumarate in tablets .International Journal of Advances in Pharmaceutical Analysis,5(1), 2015,10-13.
18. P.Satyanarayana, K.L.N.N.S.V.K.Pavankumar, A.SrinivasaRao, G.SubrahmanyaSastry.A validated reverse phase HPLC method for the simultaneous estimation of lamivudine, stavudine and nevirapine in pharmaceutical dosage forms.World Journal of Pharmacy and Pharmaceutical Sciences, 4(9), 2015,1748-1761.
19. Govindarao Kamala, Sowjanyavandrevu, K.Nagavalli. Development and validation of RP-HPLC method for simultaneous estimation of lamivudine and zidovudine in bulk . International Journal of Current Pharmaceuticals Research, 8 (1), 2016,28-33.
20. Anil dubbaka, D Sireesha and vasudhabakshi.Analytical method development and validation for the simultaneous estimation of lamivudine and tenofovirdisproxilfumarate by RP-HPLC. MOJ Proteomics Bioinform, 4(5), 2016,1-6.
21. P.Saidulu, S.K.Mastanamma, Stability indicating gradient RP-HPLC method for the simultaneous estimation of lamivudine, abacavir and dolutegravir in bulk and their combined dosage form. Int. J. Pharm. Sci. Re., 37(2), 2016, 249-257.
22. Vatchavai BhaskaraRaju*, Bonthu Mohan Gandhi, Kamanthamsumanth, KolliSrinivas, BoppanaSowmya. Method development and validation for simultaneous estimation of lamivudine and zidovudine by RP-HPLC. The Pharmaceutical and Chemical Journal. 4(2), 2017, 9-18.
23. Rajkumar Prava, Ganapathy Seru, Vamsi Krishna pujala and surendrababulagu.RP-HPLC method development and validation for simultaneous determination of lamivudine, abacavir and dolutegravir in pharmaceutical dosage forms. World Journal of Pharmaceutical Sciences ,2017., 5(5), 168-181.
24. Badikela Ramakrishna, Kondapuramparameshwar, Kosikasandeep. A novel method for chromatographic determination of lamivudine and efavirenz in pure form by using HPLC. World Journal of Pharmaceutical Research, 6(15), 2017,783-810.
25. Utpal Nandi, Ayan das, Bikashroy, Hirachoudhury, BapiGorain, Tapankumar pal.Development and validation of an HPLC-UV method for simultaneous determination of zidovudine, lamivudine and nevirapine in human plasma and its applications to Pharmacokinetic Study in Human Volunteers, 5(6), . 2013,485-491.
26. Vallaru, Rajanikumar B, PhaniBhushanareddy, Ravi kumar K, Sreekanthkilaru, Naveen Babu. High throughput LC-MS/MS method for simultaneous determination of ziovudine, lamivudine and nevirapine in human plasma. Journal of Chromatography B, , 914, 2013.,921-922.
27. Rajanikumar valluruphani, Bhushanareddy B, kalian sumanth S, Praveen Kumar V, Naveen babukilaru. High throughput LC-MS/MS method for simultaneous determination of tenofovir, lamivudine and nevirapine in human plasma. Journal of Chromatography B, 931, 2013, 117-126.
28. Mahmoud alebouyeh, Hosseinamini, Rapid determination of lamivudine in human plasma by high-performance liquid chromatography. Journal of Chromatography B,975, 2015,40-45.
29. Qikun Jiang, Yan Liu, Yunjie Wang, Yinghua Sun, Bo Li, Zhenbao Li, Tianshu Lu, Shang Wang, ZhongguiHe. Simultaneous determination of entecavir and lamivudine in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study. RSC adv. 6, 2016 70990-70998.
30. Thomas Bizimana, Pierre claver kayumba, Kaigishavedaste, Kayitareegide, EliangiringaKaale,Development of high performance thin layer chromatography for simultaneous analysis of lamivudine and tenofovir disproxil fumarate .Riwanda Journal series F Medicine and Health Sciences, 3(1), 2016,6-10.
31. Madhusudhana reddyInduri, BhagavanRaju Mantripragada and Rajendra Prasad Yjella. Development and validation of a HPTLC method for simultaneous estimation of efavirenz and lamivudine in pharmaceutical dosage formulations. Reddy et al., World J Pharm Sci., 4(2), 2016,189-194.
32. Maria S. Gualdesi, JosepEsteve-Romero, Margarita C.Briňόn, Monica A Raviolo.Development and validation of stability indicating method for seven novel derivatives of lamivudine with anti-HIV and anti-HBV activity in simulated gastric and intestinal fluids. Journal of Pharmaceutical and Biomedical Analysis, 78-79, 2013,52-56.
33. Mahmoud RezaSohrabi, MahshidTayefehZarkesh. Spectra resolution for simultaneous spectrophotometric determination of lamivudine and zidovudine components in pharmaceutical formulation of human immunodeficiency virus drug based on using continuous wavelet transform and derivative transform techniques. Talanta,122, 2014,223-228.
Received on 25.06.2018 Modified on 05.08.2018
Accepted on 14.09.2018 © RJPT All right reserved
Research J. Pharm. and Tech 2018; 11(11): 5166-5172.
DOI: 10.5958/0974-360X.2018.00944.7