Marine environment: A potential source for anticancer drugs

 

Akshara Ravi, Gokul Raj M, Sathiavelu Arunachalam, Mythili Sathiavelu

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu

*Corresponding Author E-mail: smythili@vit.ac.in

 

ABSTRACT:

Marine environment is known for its rich and vast diversity of flora and fauna. It acts as a potential source for a variety of drugs that can cure wide range of diseases like cancer, diabetes. In this article, we have emphasized on the different types of anticancer drugs obtained from the marine biome. The drugs have been tabulated on the basis of their source. Though most of the drugs are being isolated from marine animals, marine microbes and plants also have the capacity to produce metabolites that possess anticancer activities. This review throws light on some of the anticancer drugs isolated from marine microbes, animals and plants as well. When compared to other natural environments, marine environment tops the list by giving most of the drugs to the medical field. The marine environment has become an extraordinary source for extracting anti-cancer drugs. All these drugs have enough potential to be analyzed for their anti-cancer capabilities. This article highlights all the major marine mined drugs which are being used in treating cancer. Few of these drugs are into existence but few are still under clinical trials. Lots of research needs to be put into this field so as to obtain effective anticancer drugs.

 

KEYWORDS:  Cancer, Anticancer drugs, Marine environment.

 

 


 

INTRODUCTION:

Cancer is one among the top ten deadliest diseases/disorders along with myocardial infarction, AIDS etc., It is caused due to change in lifestyle and food habits. Several side effects are associated with the conventional cancer treatment. Also the success rate of it is found to be very low. Due to this there is always a need for extracting new drugs from natural sources. In the search for new anticancer drugs, the marine biome has proved to be a potential source. It is the home for a

 

variety of species producing metabolites with anticancer properties. A lot of drugs from the marine environment have been brought to the market after several clinical trials. Marine flora like cyanobacteria, microalga, macro alga and marine fauna like poriferans, molluscs are the most commonly used sources for extracting anticancer drugs(1).Though it is a little difficult to extract drugs from natural sources, their analogues with same properties can be manufactured and used for medicinal purposes (2). In this review, we have mentioned few of the drugs that have been isolated from the marine sources. Along with drugs and their sources mechanism of action, the chemical nature of the compound has also been tabulated. These drugs are being used to treat different types of cancer. Few of them are still under clinical trials. Most of these drugs work by destabilizing tubulin assembly (3). Administering these drugs in appropriate dosage can effectively inhibit the growth of cancer cells with little or no side effects.

 

 

 


Table 1: Anticancer drugs from marine animals

Drug name

Source

Mechanism of action/Target molecule or pathway

Compound nature

Can be used against

Halichondrin B

Halichondria okadai(5)

Tubulin targeted mitotic inhibitor(4)

Polyether macrolide(5)

Hematological cancer(6)

Trabectedin (Ecteinascidin 743)

Caribbean tunicate Ecteinascidia turbinata(7)

Minor groove of DNA(7)

Alkaloid(7)

Soft tissue sarcoma(8)(9), Liposarcoma and Leiomyosarcoma(9)

Bryostatin

Bugula neritina(11)(12)

Downregulation of PKC(10)

Macrocyclic lactone(10)

Melanoma, Lymphoma, Reticulum cell sarcoma, Ovarian carcinoma, Leukemia, Lung cancer(12)

Discodermolide

Discodermia dissoluta (Carribean deep water marine sponge) (13)

Microtubule stabilizer(14)

Polyhydroxylated lactone(13)

Breast carcinoma(14)

Dolastatin

Dolabella auricularia(16)

Microtubule inhibitor(15)

Cytotoxic peptide(15)

Prostate adenocarcinoma(15)

Kahalalide F

Elysia rufescens(18)

Cell death via oncosis(18)

Cyclic depsipeptide(17)

Human prostate cancer, Breast cancer (18)

Squalamine

Dogfish shark Squalus acanthias(19)(20)

Anti-angiogenic(19)

Aminosteroid(20)

Ovarian cancer(19)

Dehydrodidemnin B

(Plitidepsin)(Aplidin)(23)

Mediterranean tunicate Aplidium albicans(21)(22)

Activation of Rac1 GTPase and the inhibition of protein phosphatises(22)

Depsipeptide

(21)(23)

Human colon cancer(21)

Vitilevuamide

(i)Didemnum cuculiferum (ii)Polysyncraton lithostrotum,(24)(25)

Tubulin inhibition(24)(25)

Bicyclic depsipeptide(24)

Human cancer cell lines, Mouse lymphocytic leukemia(25)

Eleutherobin

Marine coral Eleutherobia sp.(Corals in Australia)(26)

Microtubulin bundling leading to mitotic arrest(26)

Glycosylated terpene(28)

Clinical study going on(27)

Sarcodictyin

Bellonella albiflora(29)

Microtubule stabilization/Tubulin polymerization(30)

Diterpenoid(29)

Cervical cancer cells/HeLa cells(29)

Peloruside

New Zealand sponge Mycale hentscheli(32)

Microtubule stabilizer (32)

Macrocyclic secondary metabolite(32)

Ovarian carcinoma(31)

Ascididemnin

(i)    Didemnum sp.(33)

(ii)   Cystodytes dellechiajei(34)

Inhibits topoisomerase activity (33)

Pentacyclic aromatic alkaloid (33)

Leukemia(34)

Lamellarin D

Oceanic sea snail Lamellaria sp.(35)

Mitochondrial topoisomerase inhibition(36)

Hexacyclicpyrrole alkaloid (36)

Human prostate cancer and leukemia(37)

Dictyodendrin

(i)    Dictyodendrilla verongifermis(39)

(ii)   Ianthella sp.(40)

Inhibits telomerase activity(38)

Alkaloid (38)

Colon cancer cell lines(40)

ES-285(Spisulosine)

Mactromeris polynima(Marine mollusc) Also known as Spisula polynyma(41) (42)

Activates caspase 3 and 12 which further induces apoptosis(41)

Sphingolipid derivative (41)

Lymphomas, Leukemias, Prostate cancer, Renal cancer, Hepatocarcinoma, Colon cancer and Melanoma (42)

Fascaplycin

Fascaplysinopsis sp.(43).

Anti-angiogenic, specific inhibition of cyclin-dependent kinase-4, p56 tyrosine kinase inhibition (43)

Indole alkaloid (43)

Small cell lung cancer(44)

Aaptamine

Aaptos aaptos(45)

DNA intercalating activity (46)

Bioactive benzo[de][1,6]-naphthyridine(46)

Hepatocellular carcinoma (47)

Agosterol A

Spongia sp.(48)

Directly inhibited drug efflux through PgP and MRP1 (49)

Polyhydroxylated sterol acetate (48)

Reverses multidrug resistance in human carcinoma cells (48)

Aplyronine A

Sea hare Aplysia kurodai(50)

Inhibits polymerization of actin F filaments (50)

Macrolide (50)

Cervical cancer cells/HeLa cells(51)

Bistramide A

(i)    Trididemnum cyclops

(ii)   Lissoclinum bistratum(52)

Severing of actin filaments and covalent sequestration of monomeric actin in the cell (53)

Lipopeptide(52)

A549 cells /adenocarcinomic human alveolar basal epithelial cells (53)

 

 

Bromovulone III

Soft coral Clavularia viridis(54)

Induced mitochondria related activation of caspase-9 and 3(54)

Prostanoid(54)

Prostate cancer PC-3 and acute promyelocytic leukemia HL-60 cells, Hepatocellular carcinoma(54)

Cortistatin A

Marine sponge Corticium simplex (55)

Anti-angiogenic(55)

Steroidal alkaloid(55)

Human umbilical vein endothelial cells (HUVECs)(55)

Onnamide

Theonella sp. (sponge) (56)

Inhibition of protein synthesis (56)

Heterocyclic compound (56)

Murine and human tumor cells (56)

Mycaperoxide H

Thai marine sponge Mycale sp.(57)

 

Norsesterterpene Peroxide(57)

HeLa cells(57)

Cytarabine

Cryptotheca crypta(58)

Inhibits DNA replication(59)

Cytotoxic nucleoside analogue(60)

Leukemia and lymphoma(58)

 

Laulimalide

Hyattella sp.and

Fasciospongia rimosa(62)

 

Promotes abnormal tubulin polymerization and apoptosis(61)

Macrolide(61)

KB,P388,A549,HT29,MEL28 cell lines(62)

 

Table 2: Anticancer drugs from marine microbes

Drug name

Source

Mechanism of action/Target area or molecule

Compound nature

Can be used against

Didemnin b

(i)     Trididemnum solidum

(ii)    Tistrella mobilis

(iii)  Tistrella bauzanensis(63)

Induces rapid and wholesale apoptosis through dual inhibition of PPT1 and EEF1A1 (65)

Cyclic depsipeptide(63)

B16 melanoma, M5076 sarcoma and P388 leukemia(64)

Symplocamide

Marine cyanobacterium Symploca sp.(66) (68)

Protease inhibitor(66)

Cyclic depsipeptide(67) (68)

H460 lung cancer and neuro-2A neuroblastoma cell lines  (68)

Curacin A

Lyngbya majuscula(69)

Inhibits microtubule assembly(69)

Lipid(69)

Colon cancer, Renal cancer, Breast cancer(69)

Salinosporamide A (NPI-0052)

Salinospora tropica(70) (71)

Inhibits ubiquitin-proteasome(70)(71)

Gamma-Lactam and Beta-Lactone derivative(70) (71)

Multiple myeloma, solid tumors or lymphoma(71)

Thiocoraline

Marine actinomycete Micromonospora marina(72) (73)

Inhibition of DNA replication by inhibiting polymerase α(72)

Cyclic thiodepsipeptide(73)

Human non-small cell lung cancer, Breast cancer, Colon cancer, Renal cancer, Melanoma cancer(72)

DMMC(ethoxymajusculamide C)

Lyngbya majuscula(74)

Stimulates microfilament hyperpolymerization(74)

Depsipeptide(74)

Human colon cancer, Human lung cancer, human breast cancer and human leukemia(74)

Microviridins

Freshwater cyanobacterium Microcystis sp.(75)

Inhibits serine-type proteases(75)

Cyclic depsipeptide(75)

-

Borophycin

Nostoc linckia(76)

-

Boron incorporated compound(76)

Human epidermoid carcinoma(LoVo) and human colorectal adenocarcinoma(76)

Apratoxin A

Marine cyanobacterium Lyngbya majuscula(78)(79)

Induces G1 phase cell cycle arrest and apoptosis(77) (79)

Cyclodepsipeptide(78) (79)

Early stage adenocarcinoma(79)

Cryptophycin 1

Nostoc sp.(81)

Suppressor of microtubule dynamics(80)(83)

Depsipeptide family(82)

HeLa cell lines(83)

Human prostate cancer cells (84)

Largazole

Symploca sp.(85)

Inhibits class I histone deacetylases(HDACs)(85)

Cyclic depsipeptide(85)

Human malignant melanoma, human epithelial carcinoma, breast cancer, lung cancer, prostate cancer and leukemia(85)

Coibamide

Marine cyanobacterium Leptolyngbya from Coiba National Park, Panama(86)(87)

 

 

Inhibits extracellular VEGFA and arrests G1 cell cycle(86)

Cytotoxic lariat depsipeptide(86)(87)

Glioblastoma and breast cancer(86)

Scytonemin

Lyngbya aestuarii(89) Calothrix sp.(90)

Inhibits the activity of Plk1(polo-like kinase 1)(88)

Tricyclic ketone which undergoes oxidative transformations and dimerization to form the compound(89)

Multiple myeloma(88)

Lyngbyabellin A

Marine cyanobacterium Lyngbya majuscula(91)

Microfilament disruptor(92)

Cyclic

 Depsipeptide(91)

Human lung cancer, Neuroblastoma(93)

Daunorubicin

Streptomyces peucetius(94)

Intercalation with the DNA leading to interference in RNA synthesis(94)

Pigmented aglycone in glycoside linkage with an amino sugar (94)

Leukemia, Rhabdomyosarcoma, Neuroblastoma (94)

 

Table 3: Anticancer drugs extracted from marine plants

Drug name

Source

Mechanism of action/Target area or molecule

Compound nature

Can be used against

Phloroglucinol

Ecklonia cava(95)

Induces apoptosis(95)

Polyphenolic compound(95)

Colorectal carcinoma, breast cancer(95)

Stypoldione

Stipopodium zonale(96)

Gets added to the thiold containing tubulin protein(96)

Compound has o-quinone(96)

Lymphocytic leukemia(96)

Condriamide A

Chondria sp.(97)

Cytotoxic to cancer cells(97)

-

Human nasopharyngeal and colorectal cancer(97)

Caulerpenyne

Caulerpa taxifolia(98)

Inhibits microtubule polymerization(98)

Secondary metabolite(98)

Neuroblastoma(98)

Fucoxanthin

Phaeodactylum tricornutum(100)

Influences caspases, Bcl-2 proteins, MAPK, P13K/Akt, JAK/STAT, AP-1, GADD45(99)

Carotenoid(99)(100)

Liver cancer, Breast cancer, Prostate cancer, Colon cancer and lung cancer, Osteosarcoma etc.,(99)

Halomon

Portieria hornemannii(101)

Inhibits DNA methyltransferase-1(101)

Polyhalogenated monoterpene(101)

NCI-60 human tumor cell line(101)

 

 

 


DISCUSSION:

Porifera, Chordata, Cnidaria and Mollusca are the major phyla in the animal kingdom from where the drugs are extracted. Among all these phyla, Porifera tops the list. Sponges, which come under phylum Porifera have been exploited to the maximum when compared to other animals. A variety of sponges like Discodermia dissoluta, Halichondria okadai, Mycale hentscheli, Dictyodendrilla verongifermis, Corticium simplex, Theonella sp. Cryptotheca crypta, Aaptos aaptos act as potential sources till date. Second most common phylum used for anticancer drug extraction is Phylum Chordata. Tunicates like Aplidium, Didemnum, Polysyncraton, Lissoclinum, Trididemnum are potential sources for anticancer drugs. Next comes the phylum mollusc. Elysia rufescens, Dolabella sp. Spisula polynyma, Oceanic sea snails, Aplysia kurodai and all sea hares are the common molluscs that possess compounds with anticancer activity. Corals placed under Phylum Cnidaria also contribute significantly to the medical field. Bellonella albiflora, Sarcodictyon roseum, Eleutherobia sp. Clavularia viridis are corals that are being used in pharmaceutical industry. Bryozoa is a phylum that consists of aquatic invertebrates. Bugula neritina is one such organism that produces a compound which can down regulate PKC. Table 1 lists all the major drugs that are extracted from the above mentioned animals. Their mechanism of action includes microtubule destabilisation, cell death via oncosis, PgP inhibition, topoisomerase inhibition, Caspase 3 and 12 activation, actin F inhibition, anti-angiogenic activity. With these mechanisms they are able to effectively destroy the rapidly growing cancer cells. Table 2 lists the anticancer drugs extracted from marine microbes.  Cyanobacteria are also known as blue green alga. They are a class of photosynthetic bacteria. Lyngbya sp. Nostoc sp. Symploca sp. and Stigonema sp. are cyanobacteria that produce metabolites with antitumor activity. Salinospora sp. and Micromonospora sp. come under the family of micromonosporaceae and order of actinomycetales. Salinosporamide A and thiocoraline are the compounds produced by these microbes respectively. Table 3 lists the anticancer drugs obtained from marine plants. These marine plants mainly include macroalga like sea weeds. Brown alga like Ecklonia sp. Stipopodium sp. Red alga like Chondria sp. Portieria sp. and green alga like Caulerpa sp. are the main plant sources used so far. Phaeodactylum is a diatom from which fucoxanthin is being isolated. Fucoxanthin influences MAPK pathway thereby inhibiting cell proliferation.

 

CONCLUSION:

Cancer is one among the deadliest disease known to mankind. It is the major cause of death in both developed and under-developed countries. Scientists are of the view that this scenario is likely to worsen as time progresses. So there is always a great demand for a potential anticancer drug. Marine environment still has lots of flora and fauna undiscovered. Many of the marine anticancer drugs still need to be explored. If this is done it can be the solution for a variety of problems. Extensive research should be done in this area. These compounds will be of great use to mankind in treating several disorders in the future. Research that is put into the marine biome will never become a waste. It will always provide us with lots of valuable compounds. This will open doors to the discovery of many drugs that will benefit humans. Many life saving drugs can be discovered. By doing this we can combat various health problems, especially cancer, which will be on the rise in the near future.

 

ACKNOWLEDGEMENTS:

We acknowledge VIT University, Vellore, Tamil Nadu for support. We are grateful to Ms.Padmapriya Ravi for extending her valuable suggestions in writing the manuscript.

 

REFERENCES:

1.          Jirge Supriya S and Chaudhari Yogesh S. Marine: The Ultimate Source of Bioactives and Drug Metabolites. International Journal of Research in Ayurveda and Pharmacy. IJRAP 1 (1); 2010: 55-62.

2.          Gordaliza M. Natural products as leads to anticancer drugs. Clinical and Translational Oncology.9 (12);2007: 767-776.

3.          Mary Ann Jordan and Leslie Wilson. Microtubules as a target for anticancer drugs. Nature Reviews Cancer.4 (4);2004 Apr: 253-65.

4.          Ruoli Bai, Kenneth D. Paull, Cherry L. Heraldy, Louis Malspeis, George R. Pettit, and Ernest Hamel.  Halichondrin B and Homohalichondrin B, Marine Natural Products Binding in the Vinca Domain of Tubulin. Journal of biological chemistry. 266(24);Aug 25:15882-9.

5.          Y. Hirata, D. Uemura. Halichondrins. Antitumor polyether macrolides from a marine sponge. Pure and applied chemistry-The scientific journal of IUPAC 58(5); 1986:701–710.

6.          Ying-Chun Li, Rong Zhang, Ying Yang, Jia Li, Ke Zhu, Kun Yao, and Zhuo-Gang Liu. Halichondrin B amide acts as tubulin binding agent to exhibit anti-tumor efficacy in hematologic cancers.  International Journal of Clinical and Experimental Medicine. 8(10);2015:19662–19669.

7.          Maurizio D'Incalci and Carlos M. Galmarini. A Review of Trabectedin (ET-743): A Unique Mechanism of Action. Molecular Cancer Therapeutics. 9(8); 2010:2157-63.

8.          Csaba Gajdos, Anthony Elias. Trabectedin: Safety and Efficacy in the Treatment of Advanced Sarcoma. Clinical Medicine Insights: Oncology. 16(5);2011 Mar: 35-43.

9.          Jay Patrick Lopez, Csaba Gajdos, Anthony Elias. Trabectedin: Novel Insights in the Treatment of Advanced Sarcoma. Current Oncology Reports.16 (6);2014 Jun: 387.

10.       Kortmansky J, Schwartz GK. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Investigation.21 (6);2003:924-36.

11.       S. K. Davidson, S. W. Allen, G. E. Lim, C. M. Anderson,  M. G. Haygood. Evidence for the Biosynthesis of Bryostatins by the Bacterial Symbiont “Candidatus endobugula sertula” of the Bryozoan Bugula neritina. Applied and Environmental Microbiology. 67(10); 2001:4531–4537.

12.       J. Prendiville, D. Crowther, N. Thatcher, P.J. Woll, B.W. Fox, A. McGown, N. Testa, P. Stem, R. McDermott, M. Potter and G.R. Pettit. A phase I study of intravenous bryostatin 1 in patients with advanced cancer. British Journal of Cancer –Nature.  68(2); 1993: 418-424.

13.       Ross E. Longley. Discodermolide: Past, Present, and Future. In Natural Products and Cancer Drug Discovery edited by Frank E. Koehn. Springer Science and Business Media. 09 Nov-2012:39-58

14.       Raghavan Balachandran, Ernst ter Haar, Manda J Welsh, Stephen G Grant, Billy W Day. The microtubule-stabilizing agent (+)-discodermolide induces apoptosis in human breast carcinoma cells-preliminary comparisons to paclitaxel. Anticancer Drugs.9 (4); 1998 Apr: 369-70.

15.       Uika Vaishampayan, Michael Glode, Wei Du, Andrew Kraft, Gary Hudes, Jeremy Wright, and Maha Hussain. Phase II. Study of Dolastatin-10 in Patients with Hormone-refractory Metastatic Prostate Adenocarcinoma. Clinical Cancer Research.  6(11); November 2000:4205–4208,

16.       George R. Pettit, Yoshiaki Kamano, Cherry L. Herald, Youichi Fujii, Haruhisa Kizu, Michael R. Boyd, Fred E. Isolation of dolastatins 10–15 from the marine mollusk Dolabella auricularia. Tetrahedron.49(41), 9151-9170

17.       Luis J. Cruz, Juan R. Luque-Ortega, Luis Rivas, and Fernando Albericio. Kahalalide F, an Antitumor Depsipeptide in Clinical Trials, and Its Analogues as Effective Anti leishmanial Agents. Molecular Pharmaceutics.6 (3); 2009: 813–824.

18.       Yajaira Suárez, Laura González, Ana Cuadrado, Maite Berciano, Miguel Lafarga and Alberto Muñoz. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Molecular Cancer Therapeutics. 2(9); 2003:863-72.

19.       Dan Li, Jon I Williams and Richard J Pietras. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene over expression. Oncogene. 21(18); 2002:2805-2814.

20.       Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr, McCrimmon D, Zasloff M. Squalamine: an aminosterol antibiotic from the shark. Proceedings of the National Academy of Sciences. 90(4);1993: 1354–1358.

21.       Lobo C, García-Pozo SG, Núñez de Castro I, Alonso FJ. Effect of dehydrodidemnin B on human colon carcinoma cell lines. Anticancer research. 17(1A);1997:333-6.

22.       Muñoz-Alonso MJ, González-Santiago L, Martínez T, Losada A, Galmarini CM, Muñoz A. The mechanism of action of plitidepsin.  Current opinion in investigational drugs. 10(6); 2009:536-42.

23.       Celli N, Gallardo AM, Rossi C, Zucchetti M, D'Incalci M, Rotilio D. Analysis of aplidine (dehydrodidemnin B), a new marine-derived depsipeptide, in rat biological fluids by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications.731(2); 1999:335-43.

24.       Annette M. Fernandez. Isolation and Characterization of Vitilevuamide from the Ascidians Didemnum cuculliferum and Polysyncraton lithostrotumcontent.lib.utah.edu/utils/getfile/collection/etd1/id/385/filename/438.pdf

25.       Michael C. Edler, Annette M. Fernandez, Peter Lassota, Chris M. Ireland, Louis R. Barrows. Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochemical Pharmacology. 63(4); 2002:707-15.

26.       Long BH, Carboni JM, Wasserman AJ, Cornell LA, Casazza AM, Jensen PR, Lindel T, Fenical W, Fairchild CR. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Research.58 (6); 1998:1111-5.

27.       Ernest Hamel, Dan L. Sackett, Dionisios Vourloumis, and K. C. Nicolaou. The Coral-Derived Natural Products Eleutherobin and Sarcodictyins A and B:  Effects on the Assembly of Purified Tubulin with and without Microtubule-Associated Proteins and Binding at the Polymer Taxoid Site. Biochemistry. 38 (17); 1999: 5490–5498.

28.       Berrué F, McCulloch MW, Kerr RG. Marine diterpene glycosides. Bioorganic and Medicinal Chemistry. 19(22);2011:6702-19.

29.       Yoichi Nakao , Satoru Yoshida , Shigeki Matsunaga , and Nobuhiro Fusetani. (Z)-Sarcodictyin A, a New Highly Cytotoxic Diterpenoid from the Soft Coral Bellonella albiflora. Journal of Natural Products. 66 (4);2003: 524–527

30.       K. C. Nicolaou , J. Y. Xu , S. Kim , J. Pfefferkorn , T. Ohshima , D. Vourloumis , and S. Hosokawa. Total Synthesis of Sarcodictyins A and B. Journal of the American Chemical Society. 120 (34);1998:8661–8673

31.       John H. Miller 1, A. Jonathan Singh and Peter T. Northcote .Microtubule-Stabilizing Drugs from Marine Sponges: Focus on Peloruside A and Zampanolide. Marine drugs 8(4); 2010:1059-1079.

32.       Arun Kanakkanthara, Peter T. Northcote and John H. Miller. Peloruside A: a lead non-taxoid-site microtubule stabilizing agent with potential activity against cancer. Royal Society of chemistry. 33(4);2016:549-61

33.       Sandra S. Matsumoto, Jason Biggs, Brent R. Copp , Joseph A. Holden  and Louis R. Barrows.  Mechanism of Ascididemin-Induced Cytotoxicity. Chemical Research in Toxicology.16 (2); 2003:113-22.

34.       Laurent Dassonneville, Nicole Wattez, Brigitte Baldeyrou, Christine Mahieu, Amélie Lansiaux, Bernard Banaigs, Isabelle Bonnard, Christian Bailly. Inhibition of topoisomerase II by the marine alkaloid ascididemin and induction of apoptosis in leukemia cells. Biochemical Pharmacology.          60( 4);2000:527–537.

35.       Bailly C.  Anticancer properties of lamellarins. Marine Drugs.  13(3);2015:1105-23

36.       Khiati S, Seol Y, Agama K, Dalla Rosa I, Agrawal S, Fesen K, Zhang H, Neuman KC, Pommier Y. Poisoning of mitochondrial topoisomerase I by lamellarin D. Molecular Pharmacology. 86(2);2014:193-9.

37.       Marie Vanhuysea, Jérôme Kluzaa, Christèle Tardya, Gabriel Oterob, Carmen Cuevasb, Christian Baillya. Lamellarin D: a novel pro-apoptotic agent from marine origin insensitive to P-glycoprotein-mediated drug efflux. Cancer Letters. 221(2); 2005: 165–175.

38.       Alois Fürstner, Mathias M. Domostoj , and  Bodo Scheiper. Total synthesis of Dictyodendrin B.  Journal of the American Chemical Society. 127(33); 2005:11620-1.

39.       Robert A. Hill.7 Marine natural products. Annual Reports Section “B” (Organic Chemistry), Royal Society of Chemistry.  100; 2004:169-189.

40.       Hua Zhang, Melissa M. Conte, Zeinab Khalil, Xiao-Cong Huang and Robert J. Capon. New dictyodendrins as BACE inhibitors from a southern Australian marine sponge, Ianthella sp.RSC Advances.2;2012: 4209-4214.

41.       Salcedo M, Cuevas C, Alonso JL, Otero G, Faircloth G, Fernandez-Sousa JM, Avila J, Wandosell F. The marine sphingolipid-derived compound ES 285 triggers an atypical cell death pathway. Apoptosis: An International Journal on Cell death. 12(2);2007:395-409

42.       EduardoVilar,Viktor Grünwald, Patrick Schöffski, Harald Singer, Ramon Salazar, Jose Luis Iglesias, Esther Casado, Martin Cullell-Young, Jose Baselga, Josep Tabernero.  A phase I dose-escalating study of ES-285, a marine sphingolipid-derived compound, with repeat dose administration in patients with advanced solid tumors. Investigational New Drugs.  30(1);2012:299-305.

43.       Bharate SB, Manda S, Mupparapu N, Battini N, Vishwakarma RA. Chemistry and biology of fascaplysin, a potent marine-derived CDK-4 inhibitor. Mini reviews in Medicinal Chemistry.  12(7); 2012:650-64.

44.       Gerhard Hamilton. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines. Marine drugs. 12(3);2014: 1377-1389

45.       Khozirah Shaari, Kee Cheng Ling, Zalilawati Mat Rashid, Tan Pei Jean, Faridah Abas, Salahudin Mohd. Raof, Zurina Zainal, Nordin Hj. Lajis, Habsah Mohamad, and Abdul Manaf Ali. Cytotoxic Aaptamines from Malaysian Aaptos aaptos. Marine Drugs.  7(1); 2009: 1–8.

46.       Sergey A. Dyshlovoy, Sergey N. Fedorov, Larisa K. Shubina, Alexandra S. Kuzmich, Carsten Bokemeyer, Gunhild Keller-von Amsberg, and Friedemann Honecker. Aaptamines from the Marine Sponge Aaptos sp. Display Anticancer Activities in Human Cancer Cell Lines and Modulate AP-1-, NF-κB-, and p53-Dependent Transcriptional Activity in Mouse JB6 Cl41 Cells. BioMed Research International. 2014; 2014:469309, 7 pages.

47.       Qiao-lu Li, Ping-ping Zhang, Pei-qin Wang, Hao-bing Yu, Fan Sun, Wen-zheng Hu, Wen-hui Wu, Xin Zhang, Fei Chen, Zhi-yong Chu, Jun-ping Zhang, Shun-shen Chen and Hou-wen Lin. The Cytotoxic and Mechanistic Effects of Aaptamine on Hepatocellular Carcinoma. Anti-cancer Agents in Medicinal Chemistry. 15(3); 2015:291-7.

48.       Shunji Aoki,  Yasuhiro Yoshioka,  Yasuhisa Miyamoto, Kouichi Higuchi, Andi Setiawan, Nobutoshi Murakami, Zhe-Sheng Chen, Tomoyuki Sumizawa, Shin-ichi Akiyama, Motomasa Kobayashi. Agosterol A, a novel polyhydroxylated sterol acetate reversing multidrug resistance from a marine sponge of Spongia sp. Tetrahedron Letters 39; 1998: 6303-6306.

49.       Shunji Aoki, Zhe-Sheng Chen, Kimihiko Higasiyama, Andi Setiawan, Shin-ichi Akiyama and Motomasa Kobayashi. Reversing Effect of Agosterol A, a Spongean Sterol Acetate, on Multidrug Resistance in Human Carcinoma Cells. Japanese Journal of Cancer Research.92; 2001:886–895.

50.       Kunio Hirata, b, Shin Muraoka, Kiyotake Suenaga, Takeshi Kuroda,  Kenichi Kato, Hiroshi Tanaka, Masaki Yamamoto, Masaki Takata, Kiyoyuki Yamada, Hideo Kigoshic. Structure Basis for Antitumor Effect of Aplyronine A. Journal of Molecular Biology. 356(4); 2006:945-54.

51.       Masaki Kita, Yuichiro Hirayama, Kozo Yoneda, Kota Yamagishi, Takumi Chinen, Takeo Usui, Eriko Sumiya, Motonari Uesugi, and Hideo Kigoshi. Inhibition of Microtubule Assembly by a Complex of Actin and Antitumor Macrolide AplyronineA. Journal of The American Chemical Society. 135(48);2013:18089–18095

52.       Brian T. Murphy, Shugeng Cao, Peggy Brodie, Jean Maharavo, Hanta Andriamanantoanina, Pierre Ravelonandro and David G.I. Kingston. Antiproliferative Bistramides from Trididemnum cyclops from Madagascar. Journal of Natural Products.  72(7); 2009: 1338–1340.

53.       Rizvi SA, Courson DS, Keller VA, Rock RS, Kozmin SA. The dual mode of action of bistramide A entails severing of filamentous actin and covalent protein modification. Proceedings of the National Academy of Sciences. 105(11);2008:4088-92 

54.       Chiang PC, Chien CL, Pan SL, Chen WP, Teng CM, Shen YC, Guh JH. Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma. Journal of Hepatology. 43(4); 2005:679-86.

55.       Shunji Aoki, Yasuo Watanabe, Mami Sanagawa, Andi Setiawan, Naoyuki Kotoku, and Motomasa Kobayashi. Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. Journal of the American Chemical Society.128 (10); 2006: 3148–3149.

56.       Burres NS, Clement JJ. Antitumor activity and mechanism of action of the novel marine natural products mycalamide-A and -B and onnamide.  Cancer Research. 49(11); 1989:2935-40.

57.       Preecha Phuwapraisirisan, Shigeki Matsunaga, Nobuhiro Fusetani, Nilnaj Chaitanawisuti, Sirusa Kritsanapuntu and  Piamsak Menasveta. Mycaperoxide H, a New Cytotoxic Norsesterterpene Peroxide from a Thai Marine Sponge Mycale sp. Journal of Natural Products. 66(2); 2003:289-91.

58.       Schwartsmann G, Brondani da Rocha A, Berlinck RG, Jimeno J. Marine organisms as a source of new anticancer agents. The Lancet Oncology. 2(4); 2001:221-5.

59.       Richard L Momparler. Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Experimental Hematology and Oncology. 2(20); 2013.

60.       Jie Cai, Vijaya L. Damaraju, Normand Groulx, Delores Mowles, Yunshan Peng, Morris J. Robins, Carol E. Cass and Philippe Gros. Two Distinct Molecular Mechanisms Underlying Cytarabine Resistance in Human Leukemic Cells. Cancer Research.68(7);2008:2349-57

61.       Paul A. Wender, Sayee G. Hegde, Robert D. Hubbard, and Lei Zhang. Total Synthesis of (−)-Laulimalide. Journal of the American Chemical Society. 124 (18); 2002: 4956–4957.

62.       Arun K. Ghoshand Yong Wang. Total Synthesis of (−)-Laulimalide. Journal of The American Chemical Society.2000, 122 (44); 2000:11027–11028.

63.       Ying Xu, Roland D. Kersten, Sang-Jip Nam, Liang Lu, Abdulaziz M. Al-Suwailem, Huajun Zheng, William Fenical, Pieter C. Bacterial biosynthesis and maturation of the didemnin anticancer agent.  Journal of the American Chemical Society. 134 (20); 2012:8625–8632.

64.       Chun HG, Davies B, Hoth D, Suffness M, Plowman J, Flora K, Grieshaber C, Leyland-Jones B. Didemnin B. The first marine compound entering clinical trials as an antineoplastic agent. Investigational new drugs. 4(3); 1986:279-84.

65.       Malia B Potts, Elizabeth A McMillan,  Tracy I Rosales, Hyun Seok Kim, Yi-Hung Ou,  Jason E Toombs, Rolf A Brekken, Mark D Minden, John B MacMillan and Michael A White. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nature Chemical Biology.11(6);2015:401-8

66.       Symplocamide A, a Potent Cytotoxin and Chymotrypsin Inhibitor from the Marine Cyanobacterium Symploca sp. Roger G. Linington, Daniel J. Edwards, Cynthia F. Shuman, Kerry L. McPhail, Teatulohi Matainaho and William H. Gerwick. Journal of Natural Products. 71(1);2008:22-27

67.       Solid phase total synthesis of the 3-amino-6-hydroxy-2-piperidone (Ahp) cyclodepsipeptide and protease inhibitor Symplocamide A. Sara C.Stolze, Michael Meltzer, Michael Ehrmann and Markus Kaiser. Chemical Communications. 46(46);2010:8857-8859.

68.       Antitumor Peptides from Marine Organisms. Lan-Hong Zheng, Yue-Jun Wang, Jun Sheng, Fang Wang, Yuan Zheng, Xiu-Kun Lin and Mi Sun. Marine Drugs. 9(10)2011:1840-1859.

69.       William H. Gerwick, Philip J. Proteau, Dale G. Nagle, Ernest Hamel, Andrei Blokhin, Doris L. Slate.  Structure of Curacin A, a Novel Antimitotic, Antiproliferative and Brine Shrimp Toxic Natural Product from the Marine Cyanobacterium Lyngbya majuscula. The Journal of Organic Chemistry.  59 (6); 1994: 1243–1245.

70.       Tobias A. M. Gulder and Bradley S. Moore. Salinosporamide Natural Products: Potent 20S Proteasome Inhibitors as Promising Cancer Chemotherapeutics. Angewandte Chemie(International ed. In English).  49(49);2010:9346-67.

71.       William Fenical, Paul R. Jensen, Michael A. Palladino, Kin S. Lam, G. Kenneth Lloyd, Barbara C. Potts. Discovery and Development of the Anticancer Agent SalinosporamideA(NPI-0052). Bioorganic and Medicinal Chemistry.17(6); 2009: 2175.

72.       E Erba, D Bergamaschi, S Ronzoni, M Faretta, S Taverna, M Bonfanti, CV Catapano, G Faircloth, J Jimeno and M D’Incalci. Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. British Journal of Cancer. 80(7); 1999: 971–980.

73.       Perez Baz J, Cañedo LM, Fernández Puentes JL, Silva Elipe MV.  Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. Physico-chemical properties and structure determination. The Journal of Antibiotics (Tokyo). 50(9); 1997:738-41.

74.       T. Luke Simmons, Lisa M Nogle, Joseph Media, Frederick A Valeriote, Susan L Mooberry, and William H Gerwick. Desmethoxymajusculamide C, a Cyanobacterial Depsipeptide with Potent Cytotoxicity in both Cyclic and Ring-Opened Forms. Journal of Natural Products. 72(6); 2009: 1011–1016.

75.       Nadine Ziemert, Keishi Ishida, Annika Weiz, Christian Hertweck, and Elke Dittmann. Exploiting the Natural Diversity of Microviridin Gene Clusters for Discovery of Novel Tricyclic Depsipeptides. Applied Environmental Microbiology. 76(11); 2010:3568-74.

76.       Thomas Hemscheidt, Melany Puglisi-Weening ,  Linda K. Larsen ,  Jon Clardy. Structure and biosynthesis of borophycin, a new Boeseken complex of boric acid from a marine strain of the blue-green alga Nostoc linckia. The Journal of Organic Chemistry. 59 (12);1994:3467–3471

77.       Hendrik Luesch, Sumit K Chanda, R Marina Raya, Paul D DeJesus, Anthony P Orth, John R Walker, Juan Carlos Izpisua Belmonte, Peter G Schultz. A functional genomics approach to the mode of action of Apratoxin A. Nature Chemical Biology.2(3);2006:158-67

78.       Hendrik Luesch, Wesley Y. Yoshida, Richard E. Moore, Valerie J. Paul, and Thomas H. Corbett. Total Structure Determination of Apratoxin A, a Potent Novel Cytotoxin from the Marine Cyanobacterium Lyngbya majuscula. Journal of the American Chemical Society.123 (23); 2001:5418-23.

79.       Rahul Kunwar Singh, Shree Prakash Tiwari, Ashwani K Rai and Tribhuban M Mohapatra. Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics.64 (6); 2011:401-12.

80.       Charles D. Smith, Xinqun Zhang. Mechanism of Action of Cryptophycin. The Journal of Biological Chemistry. 271(11); 1996: 6192–6198. 

81.       Nathan A. Magarvey, Zachary Q. Beck, Trimurtulu Golakoti, Yousong Ding, Udo Huber, Thomas K Hemscheidt, Dafna Abelson, Richard E. Moore, David H. Sherman. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chemical Biology. 1(12); 2006:766-79.

82.       Golakoti Trimurtulu, Ikuko Ohtani, Gregory M. L. Patterson, Richard E. Moore, Thomas E. Corbett, Frederick A. Valeriote, Lisa Demchik. Total structures of Cryptophycins, Potent Antitumor Depsipeptides from the Blue-Green Alga Nostoc sp. Strain GSV 224. Journal of the American Chemical Society. 116 (11); 1994: 4729–4737.

83.       Dulal Panda, Keith DeLuca, Daniel Williams, Mary Ann Jordan, Leslie Wilson. Antiproliferative mechanism of action of cryptophycin-52: Kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends. Proceedings of the National Academy of Sciences of the United States of America.95 (16); 1998: 9313–9318.

84.       Lisa Drew, Robert L. Fine, Tamara N. Do, Geoffrey P. Douglas and Daniel P. Petrylak. The Novel Antimicrotubule Agent Cryptophycin 52(LY355703) Induces Apoptosis via Multiple Pathways in Human Prostate Cancer Cells.  Clinical Cancer Research.8 (12); 2002:3922-32.

85.       Jiyong Hong and Hendrik Luesch. Largazole: From Discovery to Broad-Spectrum Therapy. National Product Reports. 29(4); 2012:449-56.

86.       Serrill JD, Wan X, Hau AM, Jang HS, Coleman DJ, Indra AK, Alani AW, McPhail KL, Ishmael JE. Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Investigational New drugs. 34(1); 2016:24-40.

87.       Rebecca A. Medina, Douglas E. Goeger, Patrice Hills, Susan L. Mooberry, Nelson Huang, Luz I. Romero,Eduardo Ortega-Barría, William H. Gerwick and Kerry L. McPhail. Coibamide A, a Potent Antiproliferative Cyclic Depsipeptide from the Panamanian Marine Cyanobacterium Leptolyngbya sp. Journal of the American Chemical Society.130 (20); 2008:6324-5.

88.       Zhang G, Zhang Z, Liu Z. Scytonemin inhibits cell proliferation and arrests cell cycle through downregulating Plk1 activity in multiple myeloma cells. Tumour Biology: The journal of the International Society for Oncodevelopmental Biology and Medicine. 34(4); 2013:2241-7.

89.       Emily P. Balskus, Rebecca J. Case, Christopher T. Walsh. The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities. FEMS Microbiology Ecology. Volume 77(2); 2011:322-332.

90.       Dillon JG, Castenholz RW. The synthesis of the UV-Screening pigment, scytonemin, and photosynthetic performance in isolates from closely related natural populations of cyanobacteria (Calothrix sp.). Environmental Microbiology. 5(6); 2003:484-91.

91.       Kenneth E. Milligan, Brian Marquez, R. Thomas Williamson, William Gerwick. Lyngbyabellin B, a Toxic and Antifungal Secondary Metabolite from the Marine Cyanobacterium Lyngbya majuscula. Journal of Natural Products. 63(10); 2000:1440-3.

92.       Luesch H, Yoshida WY, Moore RE, Paul VJ. Isolation and structure of the cytotoxin lyngbyabellin B and absolute configuration of lyngbyapeptin A from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products. 63(10); 2000:1437-9.

93.       Rita Tohme, Nadine Darwiche and HalaGali-Muhtasib. A Journey under the Sea: The Quest for Marine Anti-Cancer Alkaloids. Molecules. 16(11); 2011:9665-96.

94.       Charlotte Tan, Hideko Tasaka, Kou-Ping Yu, M. Lois Murphy and Davis A. Karnofsky. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 20(3); 1967:333-53.

95.       Mi-Hye Kang, In-Hye Kim, and Taek-Jeo Ng Nam. Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells. Oncology Reports. 32(4); 2014:1341-6.

96.       E. Timothy O'Brien, David J. Asai, Amiram Groweiss, Bruce H. Lipshutz, William Fenical, Robert S. Jacobs, Leslie Wilson. Mechanism of action of the marine natural product stypoldione: evidence for reaction with sulfhydryl groups. Journal of Medicinal Chemistry. 29(10); 1986:1851-5.

97.       Aseer Manilal, Sugathan Sujith, George Seghal Kiran, Joseph Selvin, Chippu Shakir, Ramakrishnan Gandhimathi, Mamkoottathil Velayudhan Nataraja Panikkar. Biopotentials of Seaweeds collected from Southwest Coast of India. Journal of Marine Science and Technology. Vol. 17(1); 2009:67-73.

98.       Barbier P, Guise S, Huitorel P, Amade P, Pesando D, Briand C, Peyrot V. Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sciences. 70(4); 2001:415-29.

99.       Luc J. Martin. Fucoxanthin and Its Metabolite Fucoxanthinol in Cancer Prevention and Treatment. Marine Drugs. 13(8); 2015:4784-98.

100.    Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology. 166(7);2012:1843-55.

101.    Cyril Bucher, Richard M. Deans, and Noah Z. Burns. Highly Selective Synthesis of Halomon, Plocamenone, and Isoplocamenone. Journal of the American Chemical Society.137 (40); 2015:     12784-7.



 

 

 

Received on 10.02.2017             Modified on 20.02.2017

Accepted on 16.03.2017           © RJPT All right reserved

Research J. Pharm. and Tech. 2017; 10(5): 1543-1550.

DOI: 10.5958/0974-360X.2017.00272.4