Natural Anticonvulsants: A Review

 

Surendra Nath Pandeya*, Rajeev Kumar and Ashish Kumar Pathak

Medicinal Chemistry Research Laboratory, Department of Pharmacy, Saroj Institute of Technology and Management, Sultanpur Road, Lucknow, Pin-226002, U.P., India.

*Corresponding Author E-mail: snpande65@yahoo.co.in

 

ABSTRACT

Epilepsy is a neurological disorder affecting a large scale of the population, which accounts for about 1% of the world’s burden of diseases. A large number of agents called antiepileptic drugs are available to treat various types of seizures with the objective to reduce seizure frequency and severity within a framework of an acceptable level of side effects. There are number of drugs available for treatment of epilepsy in modern therapy. But the major disadvantage being faced is their chronic side effects. Treatment of epilepsy with herbal drugs as adjuvant seems to be more beneficial and is gaining more popularity due to their fewer side effects. Herbal drugs are acting at target site having same mechanism of action as that of synthetic drugs. There is still a need for new antiepileptic drugs (AEDs), may be derived from natural sources, as the clinical efficacy tolerability, toxicity properties of existing synthetic AEDs may not be satisfactory. This review focuses on the use of natural products for control of epilepsy.

 

KEYWORDS: Natural AEDs, Herbal anticonvulsants.

 


1-INTRODUCTION:

Epilepsy is a neurological disorder that affects a wide range of people throughout the world1. Epilepsy has now become the most serious brain disorder, which accounts for about 1% of the world’s burden of diseases. Epilepsy is a neurological disorder characterized by excessive electrical discharge in brain, which cause seizures. The therapeutic strategy in countering epilepsy involves reducing neuronal excitability through different mechanistic pathways given in figure.

 

Most therapeutics currently used in the treatment of epilepsy is either directed toward blocking voltage-gated sodium and calcium channels or potentiating gamma amino butyric acid (GABA)-mediated neurotransmission, with little focus on voltage-gated potassium ion channels, despite these channels having a major role in the control of all aspects of neuronal excitability. It is reported that functional impairment of potassium in channels, either by mutation or inhibition result in epilepsy3. Incidence of epilepsy in developed countries is approximately 50 per 100,000 while that of developing country is 100 per 100,000 (WHO, 2006).  In many tropical countries the incidence of epilepsy was estimated to be greater than 0.5% of a given population and is higher in male than female with a majority having their first attack before the age of twenty4.

A number of synthetic antiepileptic drugs are available in practice, however their effectiveness does not hold true with the entire range of population suffering from this disorder. The conventional antiepileptic agents like phenytoin and sodium valporate carry with them several serious side effects notably neurotoxicity (given in table-1).

 

It has been observed that the presently available antiepileptic drugs are unable to control seizures effectively in as many as 25% of the patients.As majority of antiepileptic drugs are consumed life long, concomitant administration of other drugs predisposes to the risk of drug interaction (given in table-2).

 

The current therapeutic treatment of epilepsy with modern antiepileptic drugs (AEDs) is associated with side-effects, dose-related and chronic toxicity, and teratogenic effects, and approximately 30% of the patients continue to have seizures with current AEDs therapy. The currently available synthetic antiepileptic drugs provide seizure control in upto 70% patient with  epilepsy , the remaining patient have refractory epilepsy.

 

Thus there is still need to develop new drugs with greater clinical efficacy, tolerability minimal side effect, devoid of unfavorable drug interactions and better pharmacokinetic properties4,5.

 

2-NATURAL PRODUCTS:

Traditional medicine involves the use of herbal medicine, animal parts and minerals. However, herbal medicines are the most widely used of the above three. Herbal medicines contain an active ingredient, aerial or underground parts of plants as their petal or seeds materials or combinations thereof, whether in the crude state or as plant preparations. Furthermore, about 80% of the world population is dependent (wholly or partially) on plant-based drugs (WHO, 1996)6.

 

    

On the other hand, the world health organization has estimated that perhaps 80% of the world’s population relies chiefly on traditional medicine for primary health care needs. Moreover, allopathic science may gain much from the study of such systems and important allopathic drugs like digitalis, quinine, atropine and several others have originated from plant sources. The discipline of Ayurveda (An alternative system of medicine) has existed in India from millennia with the objective to treat poor health with economical medicines obtained from herbs.

 

Likewise, different regions across the globe inherit their traditional system of medicine wherein, in today’s globalized era these traditional systems should not be restricted to their native origins but rather be made accessible and used throughout the human population. With this regards herbal anticonvulsants that are successfully exploited are reviewed as under7.

 

On the other hand, herbal medicines are widely used across the globe due to their wide applicability and therapeutic efficacy coupled with least side effects, which in turn has accelerated the scientific research regarding the antiepileptic activity. Natural products have contributed significantly in the discovery of modern drugs and can be an alternative source for the discovery of AEDs with novel structures and better safety and efficacy profiles. Thus, it is necessary to investigate for an anti epileptic agent that is highly efficacious as well as safe in items of drug related toxicity1.

 

An alternative to therapy for epilepsy could be from natural sources.These medicines may prove superior to synthetic drugs. A detailed account from various plant derived product are described in the given table (3).

 

Mechanism through which plants act as anticonvulsant agents:

It was thought that epileptic drugs inhibit seizure by regulating GABA mediated synaptic inhibition and /or by blocking post-synaptic 5-HT receptors and /or by inhibiting serotonergic transmission44.

 

Bacopa monnieri:

The neuroprotective role of B.monnieri extract in alteration of glutamate receptor binding and gene expression of NMDA R1 in hippocampus of temporal lobe epileptic rats were observed. The neuroprotective role of B.monnieri extract in alteration of glutamate receptor binding and gene expression of NMDA R1 in hippocampus of temporal lobe epileptic rats were observed. In association with pilocarpine-induced epilepsy, there was significant down regulation of NMDA R1 gene expression and glutamate receptor binding without any change in its affinity. B.monnieri treatment of epileptic rats significantly reversed the expression of NMDA R1 and glutamate receptor binding alterations to near-control levels. Also, in the epileptic rats, it was observed a significant increase in the activity of glutamate dehydrogenase, which neared the control level after B. monnieri treatment107.

 

Bryophyllum Pinnatum:

B. pinnatum aqueous extract might produce its central nervous system depressant action as consequence of its GABAergic and less importantly, glycinergic transmission, since picrotoxin is a selective GABAA receptor antagonist while strychnine antagonizes the inhibitory spinal cord and brainstem reflexes of glycine109.

 

Cissus quadrangularis:

The inhibition by the extract of C. quadrangularis of STR-induced seizures suggests the presence of anticonvulsant properties and the involvement of glycine receptors. The sedative properties of C. quadrangularis could be related to the presence of some components in the extract activating the benzodiazepine and/or GABA recaptors in the GABA receptor complex21.

 

Cotyledon orbiculata:

Both aqueous and methanol extracts of Cotyledon orbiculata have anticonvulsant property and may probably be affecting both gabaergic and glutaminergic mechanisms to exert its anticonvulsant effect 25.

 

Cyperus articulates:

Cyperus articulatus showed dose dependent reduction in spontaneous epileptic form discharge and NMDA induced depolarization in rat cortical wedge preparation at concentration at which L-amino-3-hydroxy-5methyl-isoxazole-4- propionic acid (AMPA)induced depolarization are not affected. This indicates that the extract may contain components acting as AMPA antagonist responsible for the possible antiepileptic action27.

 

 


Table: 1

S. No

Classification

Drugs

Side effect

1-

Hydantion

Phenytoin

Nausea, skin rashes blood dyscarasias, hyperglycemia cardiac arrhythmias

2-

Barbiturate

Phenobarbital

Dizziness, lethargy, hypotension, aponea, megaloblastic anemia, Liver damage

3-

Iminostilbene

Carbamazepine

 

Eslicarbazepine

Dizziness, ataxia, drowsiness, hallucinations, dermatologic sweating, genitourinary albuminaria, hypotension, liver dysfunction.

Nausea, Dizziness and headache

4-

Oxazolidinedione

Trimethadone

Drowsiness, G.I.distress, vertigo, diplopia, epistaxis, alopecia, nephrosis, foetal malformation .

5-

Deoxybarbiturate

Primidone

Lethargy, ataxia, vertigo, irritability, severe skin rashes, lymphadenopathy, impotence, visual disturbances, lupus like reactions

6-

 

Succinimide

 

Ethosuximide

G.I. distress, euphoria, confusion, myopia, urticaria, vaginal bleeding and

7-

 

Aliphatic carboxylic

Acid

Sodium

Valproate

Nausea, vomiting, indigestion, sedation, abdominal cramps, fetal hepatic failure, alopecia, irregular menses, acute pancreases, blood dyscarasias

8-

 

Phenyltriazine

Lamotrigine

Dizziness, ataxia, blurred vision, vomiting, skin rashes, Stevens Johnson syndrome, disseminated intravascular coagulation

9-

Aromatic allylc alcohol

Stiripentol

Loss of appetite, drowsiness,cognitive impairment, ataxia, diplopia, nausea, abdominal pain and occasionally asyptomatic neutropenia.

10-

Carbamoyl ethanol

Carisbamate

Dizziness, nausea, somnolence and headache.

11-

Triazole

Rufinamide

Vomiting, somnolence,pyrexia and diarrhoea.

12-

-

Lacosamide

Dizziness, nausea, somnolence, headache, Vomiting, blurred vision, diplopia and tremor.

13-

-

Retigabine

Sedation, dizziness, cognitive impairment, vertigo and diplopia

14-

-

Brivaracetam

Mostly  CNS-related

 

Table: 2   Common drug-drug interactions

S. No.

Antiepileptic drug

Other drugs

Interactions

1-

Phenytoin

Antacids

Chlorpheniramine

Reduced serum phenytoin levels and thus loss of seizure control.

Phenytoin intoxication

2-

Barbiturates

Caffeine

Cimetidine /Ranitidine

Codeine

Felbamate

Miconazole

Rifampicin

Sodium valproate

Reduces or abolishes the hypnotic effect of pentobarbitone

Pentobarbitone reduces the absorption of cimitidine while cimitide increases metabolism of

pentobarbitone

Increases serum level of pentobarbitone.

Increases serum level of pentobarbitone.

Reduce in the activity of rifampicin by increase in the clearance.

Increase in phenobarbitone level leading to excessive sedation.

Decrease in serum phenobarbitone level

3-

 

Carbamazepine

Allopurinol

Cholestyaramine/

Colestipol

Cemitidine / Ranitidine

Diuretics

Isoniazid

Metronidazole

Primidone

Reduction in absorption of carbamazepine.

Transient increase in serum carbamazepine. Leads to hyponatraemia.

Marked increase in serum carbamazepine levels leading to toxicity.

Marked increase in serum carbamazepine levels leading to toxicity.

Carbamazepine levels are reduced leading to its poor seizure control

4-

Rufinamide

Oral hormonal contraceptives

May increase the clearance of Oral hormonal contraceptives as a result of a weak induction of CYP3A4.

5-

Carisbamate

Oral contraceptives

Reduction in Plasma concentration of Carisbamate by 20-30%

6-

Brivaracetam

Oral contraceptives

Slight reduction in absorption

 

 


Echium amoenum:

It is believed that plants of Boraginaceae family are rich of fatty acids, especially gamma linoleic acid and flavonoids. There are some evidences about anticonvulsat effect of this fatty acid and some flavonoid compound.the antiseizure effect of E.amoenum Fisch and C.A. Mey (F.M.) may be related in part to linoleic acid and/or flavonoid compounds present in the extrat43.

 

Ferula gummosa:

Modulation of glutamatergic and GABAergic transmission is some mechanisms indicated for anticonvulsant action of the monoterpenes like linalool and eugenal.therefore,it seems that the antiseizure profile of F.gummosa root may be related in part to monoterpenes and terpenoid compounds present in the root50.

 

Hypoxis hemerocallidea:

Hypoxis hemerocallidea aqueous extract produces its antiseizure effect by enhancing GABAergic neurotransmission and/or action in the brain.56

 

 

Harpagophytum procumbens:

H.procumbens secondary root aqueous extract produces its anticonvulsant activity by enhancing GABAergic neurotransmission and/or facilitating GABAergic action in the brain 61.

 

Wogonin

9  Tetrahydrocannabiol

 

Harpephyllum caffrum:

H.caffrum stem-bark aqueous extract might have inhibited and/or attenuated PTZ-and PCT-induced seizures of the mice used by enhancing, or in some way interfering with,GABAergic neurotransmission and/or action in the brain57.

 

Glycyrrhiza glabra:

Anticonvulsant effects of the G. glabra extract could be related to the inhibitory effects of glycyrrhizic acid on gap junction channels.also,there is some evidence that glycyrrhetininic acid derivatives exert a variety   of effects such as altering the activity of ion transport processes including ion channels and inhibition Na+-K+-ATPase. Glycyrrhiza extract displays biochemical properties, all of  which are possible contributors to its anticonvulsant effects54.

 

Gossypin:

Gossypin a bio-flavonoid exhibits anticonvulsant activity and the probable mode of action may be due to GABAaminergic mediation, glycine inhibitory mechanism and inhibit the electrical kindling effect1.

 

Leonotis leonurus:

The extract of L. leonurus has anticonvulsant activity and may probably be acting through non-specific mechanisms, since it affects both gabaergic and glutaminergic systems65.

 

Lavandula stoechas:

Lavandula stoechas caused a dose dependent (0.1–1.0mg/ml) relaxation of spontaneous contraction and inhibited K+ induced contractions thereby, suggesting calcium channel blockade. Further, pretreatment of the jejunum preparation with L. Stoechas produced a dose dependent shift of the Ca++ dose response curve to the right similar to the effect of standard calcium channel blocking activity 68.

 

Mimosa pudica:

Mimosa pudica used in generalized clonic seizures in man (PTZ model) through GABAnergic neurotransmission. The inhibition of strychnine induced seizures highlights its indication through glycine receptors. Overall the study revealed anticonvulsant effect of the drug through modulation of multiple neurotransmission72.

 

Nardostachys jatamansi:

Nardostachys jatamansi root extract significantally increases  seizure threshold against maximal electroshock seizure (MES) model as indicated by a decrease in the extension/flexion (E/F) ratio77.

 

Persea Americana:

Persea americana leaf aqueous extract (PAE) produces its anticonvulsant effect by enhancing GABAergic neurotransmission and/or action in the brain82.

 

Pyrenacanthia staundtii:

Strychnine has been shown to induce convulsion by modulation of action of glycine on inhibitory neurotransmitter. However, the aqueous leaf extract of Pyrenacanthia staundtii  blocked the convulsion induced by strychnine indicating the involvement of glycinergic transmission. Picrotoxin is reported as GABA receptors antagonist  inducing convulsion, but the extract failed to block the convulsion induced by this agent. This indicates that the extract is not facilitating the GABA-ergic transmission 83.


Table 3: Anticonvulsant properties of plant-products-

S.No

Plant Name

Family

Part Used

Solvent

Method

Ref.

1-

Acosmium subelegans

 

Leguminaceae,

 

Stem

Barks

Ethanol

 

PTZ,MES

8

2-

Annona diversifolia Saff. and palmitone

Annonaceae

-

-

penicillin

9

3-

 

4-

Artemisia dracunculus

 

Artemisia verlotorum

Asteraceae

(Compositae)

-

Aerial parts

-

-

 

Hydroalcoholic

PTZ,MES

 

PTZ,MES

10

 

11

5-

Aloe vera

 

Liliaceae

-

Ethanolic extracts

PTZ,MES

12

6-

Albizzia lebbeck

Mimosaceae

Leaves

 

Ethanolic extract

PTZ, electrical kindling and

MES

13,14

7-

Ambrosia paniculata

-

Leaves

-

Isoniazid, PCT, and penicillin

15

 

8-

Acorus tatarinowii Schott

Araceae.

Rhizomes

Decoction and volatile oil extracted

PTZ,MES and

prolonged PTZ kindling models

16

9-

Benincasa hispida

Cucurbitaceae.

Fruit

methanolic

PTZ, STR and PCT and MES

17

10-

 

Butea Monosperma

 

Fabaceae

Flowers

Petroleum ether extract

MES, PTZ, electrical

kindling and combination of lithium sulphate with

pilocarpine nitrate

11

11-

Cassia sophera

Caesalpiniaceae

Seed

Ethanol

PTZ,MES

18

12-

 

Crocus sativus

 

Iridaceae

Stigmas

Aqueous andethanol

PTZ,MES

19 and 20

13

 

Cissus quadrangularis

 

Cissus sicyoides

Vitaceae

 

Vitaceae

Stems

 

Leaves

Aqueous

 

Hydro-alcoholic extract

PTZ,MES, NMDA, isonicotinic hydrazid acid and STR

 

PTZ

21

 

22

14

Carissa edulis

Apocynaceae

Root bark

-

MES,PTZ

23  and

24

15-

Cotyledon orbiculata

Crassulaceae

Leaf

Aqueous and methanol

PTZ,PCT,

BCL and NMDA

25

16-

Cissampelos mucronata

Menispermaceae

Root extract

ethanolic

 

PTZ,MES

26

17-

 

Cyperus articulates

 

Cyperaceae

Rhizomes

Methanolic ,aqueous extract,

PTZ, MES, STR and PCT

 

27

18-

Carissa edulis

 

Apocynaceae

Root bark

-

PTZ,MES

28

19-

Casimiroa edulis

Rutaceae

Seeds,

Leaf

Aqueous, Methanol

PTZ,MES

and rotarod

29,30

 

20-

Cestrum nocturnum Lin

Solanaceae

Leaves

Decoction

isoniazid and PCT, maximal electroshock seizures, penicillin

31

21-

Calotropis procera

 

 

 

 

 

Calotropis gigantean

Asclepiadaceae

 

 

 

 

Asclepiadaceae

Root

 

 

 

 

 

Roots

Chloroform, aqueous extract

 

 

Alcoholic extract

MES,PTZ, lithium-pilocarpine and electrical kindling seizures

PTZ

 

-

32

 

 

 

 

 

33

22-

Calliandra portoricensis

-

Root and stem extracts

aqueous extracts

PTZ and electroshock-induced convulsions

34

23-

Centranthus longiflorus

-

-

Aqueous extract

Caffeine

35

24-

Citrus aurantium

Rutaceae

Peel and leaves

Hydroethanolic

PTZ,MES

36

 

25-

Cynodon dactylon

Graminae

Aerial parts

Ethanol extract

PTZ

37

26

Cymbopogon winterianus

Poaceae

Leaves

-

PTZ- and PIC

38

27-

 

Delphinium denudatum

 

Ranunculaceae

Roots

Ethanolic extract and aqueous fraction

MES, PTZ, BCL,PCT

and STR

39,40

28-

Desmodium adscendens

Papillionaceae

Leaves

Ethanolic extract

PTZ

41

29-

Diospyros mespiliformis

Ebenaceae.

Stem bark

Aqueous extract

PTZ, rota-rod

42

30-

Echium Amoenam

Boraginaceae

Flower

Methenol

PCT

43

31-

Erythrina indica

 

 

 

 

 

Erythrina velutina and Erythrina mulungu.

Papilionaceae

 

 

 

 

 

Fabaceae

Leaves

 

 

 

 

 

Stem bark

Ethanol, Chloroform and Ethyl acetate extracts

Hydroalcoholic extracts

PTZ,MES

 

 

 

 

 

PTZ STR,

44

 

 

 

 

 

45

32-

Eugenia caryophyllata

Myrtaceae

-

-

PTZ,MES

46

33-

Egletes viscose

-

Flower

Essential oil

PTZ

47

34-

 

 

 

35-

Ficus Sycomoros

 

F.religiosa

 

Ficus platyphylla

Moraceae

Moraceae

 

-

Stem,

Leaves

 

 

Stem bark

Ethenol

-

 

 

Methanol extract

PTZ, STR

PTZ

 

 

PTZ,MES and STR

4,48

 

 

 

49

36-

Ferula Gummosa

Apiaceae

Root,seed

Acetone

PTZ,MES and Rotarod

50,51

37-

Gossypin

Malvaceae

-

-

PTZ,MES,and STR

1

38-

Goodyera schlechtendaliana

-

Whole plants

-

PCT

52

39-

 

Ginseng

 

Araliaceae

Whole root leaves/stems extract, and a partially purified extract

 

PTZ, kainic

Acid and,pilocarpine-induced seizures

53

40-

Glycyrrhiza glabra

Leguminosae

Root and Rhizome

Aqueous,Ethanol

PTZ

54,55

41-

 

Hypoxi hemerocallidea Fisch. and C. A. Mey.

Hypoxidaceae

Corm

Aqueous

PTZ,PCT,BCL

56

42-

Harpephyllum caffrum

Anacardiaceae

Stem

Aqueous extract

PTZ, PCT

57

43-

Heracleum crenatifolium

Heracleum persicum

Umbelliferae

Fruits

Seed

Acetone extract

MES

PTZ,MES

58

59

44-

Hibiscus rosasinesis

Malvaceae

Flowers

Ethanolic

Extract

PTZ,MES

11

45-

Hypericum perforatum

 

Hypericaceae

Aerial part

Aqueous and

ethanol extract

PTZ,MES

60

46-

Harpagophytum procumbens DC

Pedaliaceae

Root

Aqueous extract

PTZ, PCT and BCL

61

47-

Ipomoea stans

 

Root

Ethyl acetate extract

PTZ

62

48-

Kalanchoe crenata (Andrews) Haworth

Crassulaceae

Leaves

Methylene chloride/methanol

PTZ, strychnine sulphate (STN) And thiosemicarbazide (TSC)

63

49-

Lecaniodiscus cupanioides

-

Root

Aqueous extract

STR ,PCT

64

50-

Leonotis leonurus

Lamiaceae

Leaves

Aqueous

PTZ, PCT,BCL

and  NMDA

65

51-

laurus nobilis

Lauraceae

Leaf

-

MES and PTZ

66

52-

Lychnophora  rupestris and L. staavioides

Vernonieae, Asteraceae

Stem

Polar extracts and methanolic fractions

PTZ

67

53-

Lavandula stoechas

 

Labiatae

Flowers

Aqueous

methanolic extract

PTZ

68

54-

Maprounea Africana

Euphorbiaceae

Leaves

Ethanolic extract

PTZ,

69

55-

Mitragyna africanus

Rubiaceae

Stem bark

Methanol extract

STR

70

56-

Mitragyna africanus

Rubiaceae

Stem bark

Methanol extract

STR

71

57-

Mimosa pudica

Mimosaceae

Leaf

Decoction

PTZ,PCT , STR and,NMDA

72

58-

 

Moringa oleifera

Moringaceae

Roots

Methanolic extract

PTZ, STR

73

59-

Myristica fragrans

 

Myristicaceae

Seeds

Petroleum

Ether

PTZ,MES,PCT

lithium pilocarpine

74

60-

Magnolia dealbata

 

Magnolia grandiflora

Magnoliaceae

Leaves

 

Seeds

Ethanol extract

Ethyl ether (EE) and hydroalcoholic extract

PTZ

 

MES

75

 

76

61-

Nardostachys jatamansi

Valerianaceae

Roots

Ethanol

PTZ,MES

77

62-

Nigella sativa

Ranunculaceae

Seeds

-

PTZ,MES

78

63-

Nepeta sibthorpii

Labiatae

(lamiaceae)

-

Methanol

PTZ

79

64-

Nylandtia spinosa L. Dumont

Polygalaceae

Leaf

Aqueous and methanol

PTZ, bicuculline, PCT, and NMDLA.

80

65-

Ocimum sanctum

Labiatae; Lamiaceae.

Stem, leaf and stem

Ethanol and chloroform extract

MES

81

66-

Persea Americana

Lauraceae

Leaf

Aqueous extract

PTZ,PCT, BCL

82

67-

Pyrenacanthia staundtii

Icacinacae

Leaf

Aqueous

PCT, STR

83

68-

Passiflora incarnate

Passifloraceae

Aerial parts (leaves, flower and fruit)

Hydro- alcoholic extract

PTZ

84

69-

Pimpinella anisum

Umbelliferae

Fruits

Aqueous

PTZ,MES

85

70-

Piper guineense

Piperaceae.

-

Water extract

NMDLA, PTZ,MES

86

71-

Petiveria alliacea

Phytolaccaceae

Root

Acetate, hexane,hydroalcoholic  and precipitated hydroalcoholic

Rotarod, PTZ

87

72-

Rosa damascena

Rasaceae

Petel

 

PTZ

88

73-

Rubus brasiliensis,

Rosaceae

Leaf

Ethanol

-

89

74-

Rhus chirindensis

Anacardiaceae

Stem-bark

Aqueous extract

PTZ, PCT and BCL

90

75-

Ruta chalepensis

Rutaceae.

Aerial parts

Ethanol extract

PTZ

91

76-

Sclerocarya birrea

Anacardiaceae

Stem bark

Aqueous extract

PTZ,PCT,BCL

92,93

77-

Scutellariae radix

Labiatae

(lamiaceae)

Root

Water extract

MES, PTZ

94

78-

Sapindus trifoliatus

Sapindaceae

Fruits

Aqueous

PTZ,MES and rotarod

95

79-

Schumanniophyton magnificum

-

Roots

Ethanolic

PCT and STR

96

80-

Sutherlandia frutescens

Fabaceae

Shoot

Aqueous extract

PTZ, PCT and BCL

97

81-

 

Sesbania grandiflora

Papilionaceae; Fabaceae.

Leaves

-

PTZ and STR, lithium-pilocarpine

98

 

82-

Sanseviera liberica Gerome and Labroy

Agavaceae

Root

Aqueous

strychnine, picrotoxin, bicuculline and pentylenetetrazole

99

83-

Spondias mombin

Anacardiaceae.

Leaves

Aqueous, methanol and ethanol

PTZ, picrotoxin

100

84-

Taxus wallichiana

Taxaceae

Leaf

Methanol

PTZ

101

85-

Tetrapleura tetraptera

Fabaceae

Fruit

Aqueous extract

PTZ, PCT and BCL

103

86-

 

 

87-

Vitex-negundo

Vitex negundo

 

Valeriana edulis

Verbenaceae

Verbenaceae

 

-

Leaf

Leaf

 

Roots

Ethanol

Petroleum ether

Hydroalcohol

PTZ,MES

STR and leptazole

rotarod

104

105

 

106

88-

Withania somnifera

Solanaceae

Root

-

PTZ

107

Pentylenetetrazole (PTZ), Picrotoxin (PCT) and Bicuculline (BCL), N-methyl-DL-aspartic acid( NMDA) and Strychnine (STR)

 


Rubus brasiliensis:

Rubus brasiliensis leaf ethanol extract was found to contain a benzodiazepine like principle and hence indicated possible involvement of GABA–A receptors. This involvement is further supported by reversal of anxiolysis in rodents induced by lumozenil, a specific GABA –A – benzodiazepine receptor antagonist89.

 

Sclerocarya birrea:

Sclerocarya birrea produces its anticonvulsant effect by enhancing GABAergic neurotransmission and/or action in the brain92.

 

Scutellaria baicalensis:

Wogonin is a natural product isolated from S. baicalensis, which possesses central nervous system effects such as anxiolytic and neuroprotective activities. Wogonin injected intraperitoneally significantly blocked convulsion induced by pentylenetetrazole and electroshock but not convulsion induced by strychnine. Wogonin also significantly reduced the electrogenic response score, but flumazenil treatment reversed this decrease to the level of the control group. The wogonin increased Cl-influx whereas Flumazenil and bicuculline inhibit it. These results indicate that the anticonvulsive effects produced by wogonin were mediated by the GABAergic neuron108.

 

Sutherlandia frutescens:

S. frurescens shoot aqueous extract produces its antiseizure effect directly by acting like GABA, or indirectly by enhancing GABAergic neurotransmission and/or action in the brain.97

 

Natural lead compounds:

The use of medicinal plants for the treatment of epilepsy and convulsive disorders dates back to prehistoric times. Several plants that were reputed to possess antiepileptic properties in different folklore cultures have been found to contain active ingredients when tested with modern bioassays for detecting anticonvulsive activities. This provides justification for their use in many different indigenous medicinal systems. The activity of many other plants however remains to be scientifically established. Ethnopharmacological research on natural products can contribute to the discovery of new active compounds with novel structures which may serve as leads to development of new antiepileptic drugs. An example is the isolation of the active alkaloid piperine from Piper nigrum L. which is one of the component herbs of an ancient Chinese medicine used for the treatment of epilepsy. Its structural modifications resulted in the synthesis of seven derivatives including antiepilepserine which was found to be more potent than the parent compound with fewer side effects and it has been used as an antiepileptic drug.

 

The aqueous extract as well as its albiflorin and pentagalloylglucose isolated from Paeonia albiflora (peony), a constituent of TJ 960, have strong inhibitory effect on PTZ induced EEG activity and Ca++ and K+ ion concentration changes related to seizures. The extract has also shown to inhibit PTZ induced intracellular Ca++ release and inward Ca++ current. Methysticin, a kava pyrone isolated from the rhizomes of Piper methysticum(which is a shrub indigenous to south Pacific islands) and its dihydro derivative have neuroprotective effects in addition to anticonvulsant properties. Methysticin also inhibits seizure-like events in three different models of epileptiform activities in hippocampal and entorhinal cortex slices.

 

Linalool a monoterpene isolated from several species of aromatic plants including Aeolanthus suaveolens G.Dom., which is used for treatment of convulsions in Brazilian Amazon, has inhibitory effect on glutamate binding in rat cerebral cortex preparations. Baicalein isolated from TJ-960 exhibited strong in vitro radical scavenging and antioxidative activity. In FeCl3-induced epilepsy model it significantly decreased the level of free radicals at the injection site in the rat brain.

 

A number of highly addictive and toxic compounds have been isolated from these plants; including LSD,∆8 and ∆9 tetrahydrocannabinols, cannabidiol and cocaine. ∆8 and ∆9 tetrahydrocannabinols have anticonvulsant activity in various experimental models of epilepsy including kindling.

 

8  Tetrahydrocannabiol

 


REFERENCES:

1.       Rasilingam D et al.    Anticonvulsant activity of bioflavonoid Gossypin. Bangladesh J Pharmacol. 2009;4: 51-54.

2.       Landmark CJ  and Johannessen SI. Pharmaclogical management of epilepsy. Drugs. 2008;68(14):1925-1939.

3.       Anand IS et al.    Retigabine: a novel anticonvulsant drug. Indian j.pharmacol. 2007; 37( 5):340-341.

4.       Ibrahim G et al.   Anticonvulsant activities of crude flavonoid fraction of the stem bark of Ficus sycomorus (moraceae). Journal of pharmacology and toxicology. 2008;3(5):351-356.

5.       Landmark CJ and  Johannessen SI.  Modifications of antiepileptic drugs for improved toleravility and efficacy. Persp Med Chem. 2008;2:21-39.

6.       Salahdeen et al.   Neuropharmacological Effects of Aqueous Leaf Extract of Bryophyllum Pinnatum in Mice. African Journal of Biomedical Research. 2006; 9 : 101 – 107.

7.       Vyawahare et al.    Herbal Anticonvulsant.Journal of Herbal Medicine and Toxicology. 2007;1(1): 9-14.

8.       Ricardo A V et al.    Evaluation of the central activity of the ethanolic extract of Acosmium subelegans (Mohlenbr) in mice. Revista Brasileira de Farmacognosia, 2002;50-51.

9.       Gonzalez-trujanom E  et al.    Anticonvulsant effect of Annona diversifolia Saff. and palmitone on penicillin-induced convulsive activity. A behavioral and EEG study in rats. Epilepsia. 2006;47(11):1810-1817.

10.     Sayyah M and  Nadjafnia L.. Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. J Ethnopharmacol. 2004;94(2-3):283-7.

11.     T. C. M. de Lima, G. S. Morato, R. N. Takahashi Evaluation of the Central Properties of Artemisia verlotorum. Planta Med. 1993;59: 326-329.

12.     Raza M. et al.    Investigation of antiepileptic activity of Aloe vera and related medicinal plants from the flora of pakistan. University of Karachi, Karachi. 2000.

13.     Kasture VS  et al. Anticonvulsive  activity of  Albizzia lebbeck, Hibiscus rosasinensis and Butea Monosperma in experimental animals. J. Ethnopharmacol. 2000; 71(1-2): 65-75.

14.     Kasture VS ,Kasture SB and Pal SC.  Anticonvulsant activity of Albizzia lebbeck leaves. IJEB.  1996;34( 1) 78—80.

15.     Buznego MT and Perez-Saad H. Acute effect of an extract of Ambrosia paniculata (Willd.) O. E. Schultz (mugwort) in several models of experimental epilepsy. Epilepsy Behav. 2004;5(6):847-51.

16.     Liao WP and Chen L. Study of antiepileptic effect of extracts from Acorus tatarinowii Schott. Epilepsia. 2005;46 Suppl 1:21-4.

17.     Kumar A and Ranu P. Anti-convulsant activity of Benincasa hispida fruit, methanol extract. Journal of Natural Remedies., 2004;4(2):195-198.

18.     Bilal A et al.    Pharmacological investigation of Cassia sophera Linn Var.purpurea, Roxb.105 Medical Journal of Islamic World Academy of Sciences . 2005;15(3): 105-109.

19.     Hosseinzadeh   H et al.    anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Archives of Iranian Medicine. 2002;5: 44—47.

20.      Hosseinzadeh H and Talebzadeh F.  Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005;76(7-8):722-724.

21.     Bum EN et al.    The anticonvulsant and sedative properties of stems of Cissus quadrangularis in mice. African Journal of Pharmacy and Pharmacology. 2008; 2(3): 042-047.

22.      Almeida ERD And  Oliveira Rafael KRD. Anxiolytic and anticonvulsant effects on mice of Flavonoids, Linalool and α-Tocopherol presents in the extract of leaves of Cissus sicyoides L. (Vitaceae). J Biomed Biotechnol.: Volume 2009, Article ID 274740, 6 pages .doi:10.1155/2009/274740.

23.      Ya'u  J And  Yaro  AH. Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract. J Ethnopharmacol. 2008;120(2):255-8.

24.     Ya'u  J and Yaro AH. Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract. J Ethnopharmacol.  2008;120,( 2):  255-258.

25.     Amabeoku GJ et al.    Anticonvulsant activity of Cotyledon orbiculata L. (Crassulaceae) leaf extract in mice.J. Ethnopharmacol. 2007;112(1): 101-107.

26.     Akah PA and Nwafor SV.  Evaluation of the sedative properties of the ethanolic root extract of Cissampelos mucronata. Boll Chim Farm   2002;141(3):243-6.

27.     Bum EN et al. Anticonvulsant properties of the methanolic extract of Cyperus articulatus(cyperaceae).  J. Ethnopharmacol. 2001;76(2): 145-150.

28.      Ya'u  J And  Yaro  AH.   Anticonvulsant activity of Carissa edulis (Vahl) (Apocynaceae) root bark extract. J. Ethnopharmacol.  2008;120(2):255-8.

29.     Mora G l  et al. Casimiroa edulis seed extracts show anticonvulsive properties in rats.  journal of ethnopharmacology.1999;68:275-28.

30.     Ruiz N.  Anticonvulsant activity of Casimiroa edulis in comparison to phenytoin and Phenobarbital.  journal of ethnopharmacology. 1995;45:199-206.

31.     Pérez-Saad H and  Buznego MT. Behavioral and antiepileptic effects of acute administration of the extract of the plant Cestrum nocturnum Lin (lady of the night)  Epilepsy Behav. 2008; 12(3):366-72.

32.     JalalpureSS and  SalahuddinM. Anticonvulsant effects of Calotropis procera root in rats Pharmaceutical Biology.2009; 47( 2): 162-167

33.     Argal A and Pathak AK. CNS activity of Calotropis gigantea roots. J Ethnopharmacol 2006 ; 106(1):142-5.

34.     Akah P A.and Nwaiwu J I. Anticonvulsant activity of root and stem extracts of Calliandra portoricensis. Journal of ethnopharmacology. 1988;22(2):205-10.

35.     Büyükokuroğlu ME and Demirezer LO.  Sedative, anticonvulsant and behaviour modifying effects of Centranthus longiflorus ssp. longiflorus: a study of comparison to diazepam. Pharmazie. 2002;57(8):559-61.

36.     Carvalho-Freitas MI and Costa M.  Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biol Pharm Bull. 2002; 25(12):1629-33.

37.     Pal D et al.    Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice   Acta Pol Pharm. 2008; 65(1):37-43.

38.      Quintans-Ju´ nior LJ  and  Souza TT.  Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine. 2008; 15:619–624

39.     Raza M  et al. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum.  J. Ethnopharmacol. 2001; 78(1): 73-78.

40.     Raza M and Shaheen F.    Anticonvulsant activities of the FS-1 subfraction isolated from roots of Delphinium denudatum. Phytother Res. 2001; 15(5):426-30.

41.     Gouemo PN and Baldy-Moulinier M.   Effects of an ethanolic extract of Desmodium adscendens on central nervous system in rodents. J Ethnopharmacol. 1996; 52(2):77-83,

42.     Adzu B and Amos  S.  Neuropharmacological screening of Diospyros mespiliformis in mice. J Ethnopharmacol. 2002; 83(1-2):139-43.

43.      Heidari MR et al.    Anticonvulsant effects of methenolic extract of Echium Amoenam Fisch and C.A.Mey against seizure induced by picrotoxin in mice. Pakistan journal of biological science. 2006;9(4): 772-776.

44.     Jesupillai M et al.    Anticonvulsant effect of  Erythrina indica Lam. Pharmacologyonline. 2008; 3: 744-747.

45.      Vasconcelos  SM and Lima  NM.  Anticonvulsant activity of hydroalcoholic extracts from Erythrina velutina and Erythrina mulungu. J Ethnopharmacol. 2007;110(2):271-4.

46.     Pourgholami MH et al.    Evaluation of the anticonvulsant activity of the essential oil of Eugenia caryophyllata in male mice. J Ethnopharmacol. 1999;64(2):167-71.

47.     Souza LMF  and Santos FA. Antinociceptive, anticonvulsant and antibacterial effects of the essential oil from the flower heads of Egletes viscose. Phytotherapy Research. 1998;12:28 – 31.

48.     N.H. Indurwale and K.R Biyani. Adv. Pharmacol.Toxicol. 2(1): 51-53 (2001).

49.      Chindo  B A and Anuka JA. Anticonvulsant properties of saponins from Ficus platyphylla stem bark. Brain Res Bull. 2008;78(6):276-82.

50.     Sayyad M et al.    Anticonvulsant effect of Ferula gummosa root extract against experiment seizures. Iranian Biomedical Journal. 2003; 7 (3): 139-143.

51.      Sayyah M, Mandgary A and Kamalinejad M. Evaluation of the anticonvulsant activity of the seed acetone extract of Ferula gummosa (Boiss.) against seizures induced by pentylenetetrazole and electroconvulsive shock in mice. J. Ethnopharmacol., 2002;82(2-3): 105-109.

52.     Xiao-Ming D et al.    Sedative and anticonvulsantt activities of goodyerin, a flavonol glycoside from Goodyera schlechtendaliana. Phytotherapy Research.  2002; 16(3): 261 – 263.

53.     Xiao-Yuan L et al.     Anticonvulsant Activity of Ginseng on Seizures Induced by Chemical Convulsants. Epilepsia. 2005;46(1):15–22.

54.      Nassiri  M et al.    Anticonvulsant effect of  aqueous extract of  Glycyrrhiza glabra root in  PTZ- induced seizure in mice. international Journal of pharmacology. 2007; 3(5): 432-434 .

55.     Ambawade SD et al.    Anticonvulsant activity of roots and rhizomes of Glycyrrhiza glabra J. Pharmacol. 2002 34: 251- 255.

56.      Ojewole JA. et al.    Anticonvulsant activity of Hypoxis hemerocallidea Fisch. and C. A. Mey. (Hypoxidaceae) corm ('African potato') aqueous extract in mice. Phytotherapy research . 2008;22 (1) : 91-96.

57.      John  AO et al.    Anticonvulsant and Analgesic effect of Harpephyllum caffrum berb. ex C.F. krauss(Anacardiaceae) stem-bark aqueous extract in mice. International journal of Pharmacology. 2007; 3(3):241-247.

58.     Tosun F and  Akyüz Kızılay Ç. Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatifolium. Food Chemistry2008;107( 3): 990-993.

59.     Sayyah  M and Moaied S . Anticonvulsant activity of Heracleum persicum seed, J Ethnopharmacol. 2005; 98(1-2):209-11

60.     Hosseinzadeh H,  Karimi GR and Rakhshanizadeh N. Anticonvulsant effect of Hypericum perforatum: role of nitric oxide. J. Ethnopharmacol. 2005;98(1-2): 207-208.

61.     Mahomed IM and Ojewole JA. Anticonvulsant activity of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract in mice. Brain Res Bull. 2006;69(1):57-62.

62.     Herrera-Ruiz M and Gutiérrez C. Central nervous system depressant activity of an ethyl acetate extract from Ipomoea stans roots. J Ethnopharmacol 2007.

63.     Nguelefack  TB and Nana P. Analgesic and anticonvulsant effects of extracts from the leaves of Kalanchoe crenata (Andrews) Haworth (Crassulaceae). J Ethnopharmacol. 2006;106(1):70-5.

64.     Yemitan OK et al.  CNS depressant activity of Lecaniodiscus cupanioides. Fitoterapia.2005;76(5):412-8.

65.     BienVenu E et al.     Anticonvulsant activity of aqueous extract of Leonotis leonuru. Phytomedicine. 2002;9(3):217-23.

66.     Sayyah M, Valizadeh J and Kamalinejad M. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole- and maximal electroshock-induced seizures. Phytomedicine. 2002; 9(3): 212-216.

67.     Silvia H. et al. Taleb-Contini  and  Wagner F. Santos Neuropharmacological Effects in Mice of Lychnophora Species (Vernonieae, Asteraceae) and Anticonvulsant Activity of 4,5-di-O-[E]-caffeoylquinic Acid Isolated From the Stem of L. rupestris and L. staavioides. Basic and Clinical Pharmacology and Toxicology. 2008;102(3):  281 – 286.

68.     Gilani AH et al.  Ethnopharmacological evaluation of Anticonvulsant sedative and antispasmodic activities of Lavandula stoechas L. J. Ethnopharmacol. 2000;71(1-2): 161-167.

69.     Gouemo PN and  Nguemby-Bina C. Some neuropharmacological effects of an ethanolic extract of Maprounea africana in rodents. Ethnopharmacol. 1994; 43(3):161-6.

70.     Aji BM  , Onyeyili PA and Osunkwo  UA.  The central nervous effects of Mitragyna africanus (Willd) stembark extract in rats    Journal of Ethnopharmacology2001;77(2-3), 143-149.

71.      Aji BM, Onyeyili PA and Osunkwo UA. The central nervous effects of Mitragyna africanus (Willd) stembark extract in rats. J. Ethnopharmacol. 2001;77(2-3):143-9.

72.     Bum E.N. et al.   Anticonvulsant activity of  Mimosa pudica decoction.  Fitoterapia. 2004;75: 309-314.

73.     Gupta M et al.  CNS activities of methenolic  extract of Moringa oleifera rot in mice. Fitoterapia. 1999; 70(3): 244-250.

74.     Sonavane GS et al. Anticonvulsant and Behaviural actions of  Myristica fragrans seeds.  J. Pharmacol. 2002; 34: 332-338.

75.      Martínez AL and  Domínguez F. Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice. J Ethnopharmacol. 2006; 106(2):250-255.

76.     Bastidas BE et al.  Anticonvulsant effects of Magnolia grandiflora L. in the rat. J Ethnopharmacol. 1998; 61(2):143-52.

77.     Vidya SR et al.     Anticonvulsant and neurotoxicity profile of Nardostachys jatamansi in rats.Journal of Ethnopharmacology. 2005;102:351–356.

78.     Hosseinzadeh H et al.   Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice.Phytomedicine: 2004;11(1):56-64.

79.      Galati EM et al.    Neuropharmacological Effects of Epinepetalactone from Nepeta sibthorpii Behavioral and Anticonvulsant Activity. Pharmaceutical Biology. 2004; 42(6): 391 – 395.

80.     Amabeoku  G et al.  Anticonvulsant activity of Nylandtia spinosa L. Dumont (Polygalaceae) aqueous and methanol leaf extracts in mice. Hum Exp Toxicol. 2008; 27(11):811-8.

81.     Jaggi RK and  Madaan R. Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and its cultures. Indian J Exp Biol. 2003;  41(11):1329-33.

82.     Ojewole JA  and Amabeoku GJ. Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice. Phytotherapy Research. 2006 20(8):  696 – 700.

83.     Awe EO et al.    Evaluation of Analgesic, Anticonvulsant and Hypnotic Activities of Pyrenacanthia staundtii.Afr. J. Trad. CAM . 2005;2(2): 122 – 128.

84.     Nassiri AM et al.    Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors. BMC Complementary and Alternative Medicine. 2007;7:26.

85.     Pourgholami MH et al.  The fruit essential oil of Pimpinella anisum exerts Anticonvulsant effects in mice. J. Ethnopharmacol. 1999; 66(2): 211-215.

86.     Abila B and Richens  A. Anticonvulsant effects of extracts of the west African black pepper, Piper guineense. J Ethnopharmacol.1993; 39(2):113-7.

87.     Gomes PB  and  Noronha EC. Central effects of isolated fractions from the root of Petiveria alliacea L. (tipi) in mice. J Ethnopharmacol 2008 .

88.     Kheirabadi M et al.    Evaluation of the anticonvulsant activities of Rosa damascene on the PTZ induced Seizures in wistar rat.  journal of biological sciences. 2008;8(2): 426-430.

89.     Nogueira E et al.    Hypnotic, anticonvulsant and muscle relaxant effects of Rubus brasiliensis. Involment of GABA-A – system.  J. Ethnopharmacol. 2002;70: 275-280.

90.     Ojewole JA et al.  Anticonvulsant effect of Rhus chirindensis (Baker F.) (Anacardiaceae) stem-bark aqueous extract in mice. J Ethnopharmacol. 2008;117(1):130-5.

91.     Gonzalez-Trujano ME  and  Carrera D. Neuropharmacological profile of an ethanol extract of Ruta chalepensis L. in mice. J Ethnopharmacol. 2006;  106(1):129-35.

92.     Ojewole J  et al.   Evaluation of the anticonvulsant effect of Sclerocarya birrea (A. Rich.) [Anacardiaceae] stembark aqueous extract in mice. University of KwaZulu-Natal. Durban, South Africa.

93.     Japan S et al.     Anticonvulsant effect of Sclerocarya birrea (A. Rich.) Hochst. subsp. caffra (Sond.) Kokwaro (Anacardiaceae) stem-bark aqueous extract in mice. Journal of Natural Medicines. 2007;61(1): 67-72.

94.     Wang HH et al.   Anticonvulsant effect of water extract of Scutellariae radix in mice. J. Ethnopharmacol. 2000;73(1-2): 185-190.

95.     Arulmozhi  DK et al.  Pharmacological studies of the aqueous extract of Sapindus trifoliatus on central nervous system:possible antimigraine mechanism.  journal of ethnopharmacology2005;.97:491-496.

96.     Ogbonnia SO et al.  Anticonvulsant Activity of Schumanniophyton magnificum Roots Extracts in Mice. West Afr. J. Pharmacol. Drug Res. 2003;19 (1and2): 33-36.

97.     Ojewole  JA et al. Anticonvulsant property of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) [Fabaceae] shoot aqueous extract. Brain Res Bull. 2008;75(1):126-32.

98.     Kasture VS and  .Deshmukh VK.  Anxiolytic and anticonvulsive activity of Sesbania grandiflora leaves in experimental animals. Phytother Res. 2002;16(5):455-60.

99.     Adeyemi  OO and Yemitan  OK.  Sedative and anticonvulsant activities of the aqueous root extract of Sanseviera liberica Gerome and Labroy (Agavaceae). J Ethnopharmacol. 2007; 113(1):111-4.

100.   Ayoka AO. and  Akomolafe R O. Sedative, antiepileptic and antipsychotic effects of Spondias mombin L. (Anacardiaceae) in mice and rats. Journal of Ethnopharmacology. 103: 166-175 (2006).

101.   Nisar M and  Khan I. Anticonvulsant. analgesic and antipyretic activities of Taxus wallichiana Zucc. J Ethnopharmacol. 2008;116(3):490-4.

102.   Ojewole  JA et al.  Analgesic and anticonvulsant properties of Tetrapleura tetraptera (Taub) (Fabaceae) fruit aqueous extract in mice. Phytother Res. 19(12):1023-9(2005).

103.   Tandon  VR et al. An experimental evaluation of anticonvulsant activity of Vitex-negundo. Indian J Physiol Pharmacol. 2005;49 (2):199-205.

104.   Gupta M. et al. CNS activity of petroleum ether extract of Vitex negundo linn in mice. Indian Journal of Pharmaceutical Sciences. 1997;59(5): 240-5.

105.   Oliva I and González-Trujano ME.  Neuropharmacological profile of hydroalcohol extract of Valeriana edulis ssp. procera roots in mice. Phytother Res. 2004; 18(4):290-6.

106.   Kulkarni SK and Akula  KK.  Effect of Withania somnifera Dunal root extract against pentylenetetrazol seizure threshold in mice: possible involvement of GABAergic system. Indian J Exp Biol. 2008;46(6):465-9.

107.   Khan R. Et al. Decreased glutamate receptor binding and NMDA R1 gene expression in hippocampus of pilocarpine-induced epileptic rats: Neuroprotective role of Bacopa monnieri extract. Epilepsy and Behavior. 2008;12: 54-60.

108.   Park  HG.et al. Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. European Journal of Pharmacology. 2007; 574: 112-119.

109.   Salahdeen HM. and Yemitan OK. Neuropharmacological Effects of Aqueous Leaf Extract of Bryophyllum Pinnatum in Mice. African Journal of Biomedical Research. 2006;9: 101 – 107.

 

 

 

 

Received on 08.06.2009       Modified on 03.08.2009

Accepted on 10.09.2009      © RJPT All right reserved

Research J. Pharm. and Tech.2 (4): Oct.-Dec. 2009; Page 670-679